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1 Introduction

Thermal noise of the optical components can be a sensitivity limiting noise source in
current and future gravitational wave detectors [1–4]. One important noise contribution
- Brownian thermal noise - is directly related to the intrinsic mechanical loss φ of the
material [5, 6].

This document summarises the different intrinsic sources of mechanical dissipation in
bulk solids focusing on crystalline samples that are of particular interest for future gravi-
tational wave detectors operating at cryogenic temperatures.
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2 Crystal growing techniques

The following chapter will summarise the main crystal growing techniques that can be
used to produce high quality crystalline bulk samples. Different techniques are available
producing different qualities of single crystals. A historical overview of the development
of crystal growing techniques can be found in [7,8]. Further details on crystal growth can
be found in different text books, e.g. [9, 10].

2.1 Growing from the gas phase

The first possibility is to grow the crystal from the gas phase. The material gets evaporated
by heating or is directly formed from a gaseous phase. Typically, only a small amount of
the material is available in gas phase in reactors of moderate sizes. Thus, a continuous
flow of new reactants is needed in order to grow large crystals. Two general principles are
used:

(a) (b)

Figure 2.1: Crystal growth from the gas phase using (a) a closed and (b) an open method.

Firstly, we consider the closed principle as shown in fig. 2.1(a). Here all raw material -
which is typically polycrystalline - is placed into a sealed reactor. The reactor is heated in a
two zone oven providing a higher temperature at the polycrystalline material and a colder
zone where the single crystalline material should be grown. By means of electrical heating
the raw material gets continuously evaporated and it condenses in the colder zone forming
single crystalline pieces. In order to grow a single crystal it is beneficial to introduce a seed
crystal before starting the growing process. Careful adjusting of the heater temperature
allows a regime where the crystal growth only occurs at the seed crystal and the formation
of new seeds is prevented. This is based on the fact that the optimum temperature to
form seed crystals and to grow single crystalline materials are well seperated. Without
the seed crystal random formation of seed crystals and an uncontrolled growth will start
that leads to small crystals with dimensions between 3 and 20mm. This method is mainly

4



used to grow smaller anorganic crystals like ZnTe, CdS, etc. An intermediate transport
material can be used to bring the reactants to the growing phase (see fig. 2.1(b)). This
method is often used when the raw material cannot be evaporated without decomposition.
Examples are ZnS or GaP where iodine and Fe2O3 is used to temporary react with the
raw material making it transportable in the gas phase. The chemical reaction is reversed
at the growing site by thermal energy.

The second method is the open principle (see fig. 2.1(b)) where an inert process gas
(e.g. nitrogen, argon or others) is used to assist the transport. Additionally, a chemical
reaction inside the gas phase can be used to produce the material for the crystal growth.
An important example is the epitaxial growth of silicon on silicon wafers from the gas
phase. This gas phase contains hydrogen that transports silicon(IV) chloride to the silicon
wafers that are heated. Here the chemical reaction forms silicon which grows epitaxially
on the wafers leaving hydrochloric gas behind which is removed by means of a gas flow.
These methods are called CVD (chemical vapor deposition) and play an important role
in microelectronics today.

2.2 Hydrothermal synthesis of crystals

Hydrothermal growth of single crystals plays an important role in growing material for
electronical and optical applications. Details of the method can be found e.g. in [11].
Water heated above the triple point can dissolve unusual amounts of typically unsolvable
solids such as SiO2 which makes it interesting for the growth of crystalline quartz. Over-
heated water at 400 ◦C is pressurized in a reactor to about 4000 atmospheres. SiO2 gets
dissolved until saturation adding sodium carbonate or hydroxide to assist the dissolving
process. Seed crystals being cut from natural quartz are put into the reactor. The whole
mixture is kept for several weeks. An epitaxial growth starts at the seed crystals forming
large single crystals of quartz (see fig. 2.2(b)).

(a) (b)

Figure 2.2: (a) Hydrothermal growth of a crystal. Raw material gets dissolved in water
under large pressured and high temperatures. Epitaxial growth starts at the
seed crystals forming large single crystals. (b) Large quartz single crystal
produced by the hydrothermal crystal growth technique (29 cm × 17 cm ×
11 cm).
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High quality single crystal quartz is grown using this method. These crystals are used
to produce time keeping components (e.g. electronical quartzes), high-frequency filters or
optical elements (e.g. waveplates). Besides its high optical and electronical quality, the
added alkaline components, however, get also introduced into the quartz crystal causing
point defects to occur. A sketch of the unperturbed quartz lattice and the geometry of
the alkali defect is presented in fig. 2.3. As discussed in section 4.6 these point defects
can be the origin of low temperature dissipation peaks.

(a)

Si

Na

Al

O

c-axis

(b)

Figure 2.3: (a) Crystal lattice structure of α-quartz. A view along the crystalline c-axis is
shown. Oxygen atoms are colored in red and silicon atoms in grey. Note the
channel formed by oxygen atoms in the mid of the picture. The sodium defect
is illustrated in (b). Here a silicon atom is substituted by an aluminum atom.
Due to the charge compensation sodium or another alkali atom enters the
lattice. This atom experiences different equilibrium positions moving within
the channel along the c-axis.

2.3 Crystal growth from the melt

Most of the industrial methods to grow large single crystals are based on the liquid-solid
phase transition. Different methods exist in order to crystallise material from the liquid
phase. By carefully choosing the temperature and crystallisation parameters it is possible
to crystallise the full melt without producing new seed crystals, twins, grain boundaries
or other defects.

2.3.1 Kyropoulos and Nacken method

The simplest crystallisation from the melt is to add a seed crystal to it and then cool the
melt [12]. During cooling the melt will transfer into the solid state crystallising at the
seed crystal. Latent heat from the phase transition liquid-solid heats the material which
causes inhomogeneous recrystallisation. Great care needs to be taken in order to extract
the heat. The quality of the single crystals produced by this method is rather low. They
contain defects in the crystal lattice as well as stress in the crystal.
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2.3.2 Bridgman and Stockbarger method

The methods developed by Bridgman and Stockbarger use a seed crystal at the lower
end of a sealed reactor that contains the raw material. This reactor, also called ampoule,
is moved through a vertical oven that provides a temperature gradient. The interface
between liquid and crystallised phase becomes thus better defined. The crystal quality is
much better.

(a) (b)

Figure 2.4: Crystal growth after Bridgman (a) and Stockbarger (b). The Stockbarger
method uses a metal ring to seperate different zones in the oven to provide a
thermal gradient for the crystallisation.

The Bridgman-Stockbarger-Method is used to grow for example gallium arsenide single
crystals. However, the size of the crystals is rather limited.

2.3.3 Czochralski method

The Czochralski method was invented by Jan Czochralski in 1916 and published in
1918 [13]. The Czochralski method is currently the most widely used method to grow
semiconductor single crystals (mainly silicon) for electronical applications. The raw ma-
terial (e.g. high purity poly-crystalline silicon) is melted in a crucible which is typically
made of silica due to the requirements in temperature. A seed crystal is put into the melt
and slowly pulled out again with a rate of mm/min (see fig. 2.5). A single crystal forms
and can be grown to large sizes. The pulling rate determines the size of the crystal. Large
crystals up to 300mm are currently standard in the wafer production for semiconductor
industry. In the experimental phase crystal growth up to 450mm in diameter was shown.
Larger sample diameters are under investigation for the semiconductor industry in order
to reduce the price for electronic devices. A critical parameter in growing crystals by
means of this method is the removal of the solidification heat. This heat is created at
the interface between the liquid and the solid phase and needs to be removed carefully.

7



Figure 2.5: Czochralski method for growing large single crystals. A seed crystal is dipped
into the melt and then slowing pulled out. At the interface liquid-solid a single
crystal growth starts. The crystal diameter can be controlled by the pulling
speed.

Additionally, the temperature inside the melt needs to be carefully kept constant. Mag-
netically assisted growing is used to support the homogeneity of the temperature profile
in the melt. This method is called magnetically assisted Czochralski growth.

The melt is heated inside a silica bowle that is placed inside a graphite cruicable. This
cruicable stiffenes the silica bowle as it starts deforming at the temperatures needed for
the crystal growth (typically slightly above the melting temperature of silicon which is
1414 degrees Celcius). The graphite crucible can also be used for electrical heating of the
system.

The crystal growth takes several hours in which the melt is able to react with the silica
boat forming silicon monoxide. This material is transfered via convection or diffusion to
both the interface melt – gas and melt – solid. At the interface melt – gas it evaporates
and gets removed by a gas flow of noble gas (typically argon). However, parts of the
chemically dissolved oxygen gets transfered to the interface liquid – solid and gets into
the single crystal forming an impurity. In electronical applications oxygen concentrations
of about 5...7×1017 cm−3 are preferred [14]. Thus, only 1% of the dissolved oxygen should
finally enter the single crystal and sets strong limits to the operational parameters of the
growing process.

Different defects exist in silicon. They can be divided into intrinsic defects (that are
created by the silicon itself) and extrinsic defects that include impurity materials such
as oxygen. The number of defects is strongly temperature dependent. Between 700 and
1000 ◦C there can be between 1015 and 1017 voids per cm−3 in pure silicon [15].

As a natural extrinsic defect oxygen plays and inportant role. Oxygen occupies in-
terstitial places in silicon between two silicon atoms forming an electrically non-active
defect. The exact structure of this defect is still under discussion. One of the possible
structures is given in fig. 2.6 [15, 16], however, also linear defect geometries are under
consideration [18, 19]. It is also under consideration for defect induced mechanical losses
of silicon [17,20].

Due to the long exposure time of the silicon to the silica bowle during crystal growth
the saturation concentration of oxygen in silicon is quickly reached. Liquid silicon can
dissolve oxygen in a concentration up to 1019 cm−3. Reducing the temperature slightly
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Figure 2.6: Interstitially bound oxygen in silicon. The oxygen atom occupies a place
between two silicon atoms [15–17].

below the melting point only 2× 1018 cm−3 oxygen atoms can be stable in silicon and
thus oxygen starts to form precipitations if the melt was saturated with oxygen.. The
dynamics of the oxygen-based defects in silicon are widely discussed in literature forming
the important task of impurity engineering for the semiconductor industry.

The foreseen step to a production of 450mm as well as 675mm diameter single crystals
is under discussion [14].

2.3.4 Heat exchange method

The heat exchange method (HEM) was developed by Schmid and Viechnicki in 1970
[21, 22]. It is an advanced gradient freeze technique. The raw material gets heated in a
crucible. A seed crystal is placed at the bottom of the melt inside the crucible and is
cooled from the back side by means of an heat exchanger (see fig. 2.7).

The heat exchanger is cooled by means of helium gas which provides a good thermal

Figure 2.7: Heat Exchange Method used to grow large pieces of sapphire. A seed crystal
is placed into the melt. This crystal is cooled from the back side by means
of a heat exchanger. This allows the precise control of the crystal growing
parameters.
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conductivity. The temperature of the seed crystal is thus controlled and a desired tem-
perature gradient within the melt/crystal can be obtained. This allows the growth of
large single crystals with an excellent quality. It is currently the best method to grow
large sapphire single crystals [23] and can be used as well to grow other crystals such as
silicon [24].

2.3.5 Float zone method

The float zone method transforms the polycrystalline raw material into a high-purity
single crystal. The raw material already has the shape of a cylinder and gets heated in a
small zone. Heating can be done using inductive methods. At one end a seed crystal is
added to start the crystallisation. Moving the liquid zone slowly through the raw material
crystallises it (see fig. 2.8). This crucible-free method allows the fabrication of high purity
single-crystals.

Figure 2.8: Float zone crystal growing technique. The upper part of the sample contains
the raw material which can be monocrystalline or polycrystalline. The lower
part of the sample is the high purity single crystal produced by the float zone
method.

Subsequent steps of zone refining (see section 2.6) can increase the purity of the sample.
Limitations to the sample diameter are set by the surface tension of the material which
has to overcome the gravity. The maximum thickness of the liquid layer can be estimated
by [25]:

tmax = 2.8

√
σ

ρg
, (2.1)

where σ is the surface tension of the liquid material, ρ its mass density and g = 9.81m/s2.
In the case of silicon tmax is in the order of 17mm which is a challenge for large diameter
crystals. Most heating methods cannot be focused to such a small layer or are focused to
a relative thin surface layer. However, alternative approaches for the heating (e.g. laser
heating) as well as electro-magnetically assisted processes can overcome this limit.
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2.4 Verneuil method

The Verneuil method is named after Auguste Verneuil who invented this crystal grow-
ing technique in 1902. Today the Verneuil method is widely used to produce synthetic
gemstones.

Figure 2.9: Crystal growth after Verneuil.

The raw material is fed into a flame which typically is produced by hydrogen and oxygen
to reach high termperatures. The material melts within the flame and is blown onto a seed
crystal where crystallisation takes place. The Verneuil method is a crucible-free crystal
growing technique that results in crystals of rather small diameters (20...50mm).

A slightly altered process is used to produce ulta high purity fused silica. Here, high
purity silicon tetrachloride (SiCl4) is added to a hydrogen/oxygen flame where it reacts
forming high purity silica and hydrochloric gas. This process is known as flame hydrolysis.

2.5 Others

There exist many other crystal growing techniques that focus on different aspects of the
crystal (material, purity, orientation, etc.). Many of them are triggered by the need of
special single crystals for research and industry. Crystals for non-linear optics or laser
crystals are an example that are widely grown by techniques adopted to the specific needs.

Examples of these crystal growing techniques are:

• Crystal growth from solutions,

• pedestal growth of single crystals,

• micro-pulling-down,

where the two last techniques might be of interest for growing crystalline suspension
elements for cryogenic applications in GW detectors.
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2.6 Zone refining technique

The zone refining technique, which is closely related to the float zone technique, was
developed by Pfann et al. [26,27] in the middle of the 20th century. The aim is to purify
already grown single crystals be remelting them in a thin zone and moving the molten
zone through the crystal. The zone refining method was the first method that allowed the
production of high purity crystals. This triggered detailed studies of electronic properties
of semiconductors where impurity concentrations of the order of 10−2...10−6 ppm can lead
to measurable effects.

Figure 2.10: Zone refining method used to purify single crystals. The upper crystal is the
raw single crystal which contains a large quantity of impurities.

The basic physical process behind the zone refining is the fact the the solubility of the
impurity material is different in the solid crystal compared to the melt. The ratio

κ =
csolid

cliquid

(2.2)

is a measure how good an impurity is dissolved in the melt. κ is called the segregation
coefficient and is given in tab. 2.1 for different materials. This coefficient is typically < 1
indicating that the impurity gets easier dissolved in the melt. A thin part of the crystal
(see section 2.3.5) is heated and transfered into the liquid state. The liquid section is
slowly moved through the crystal. All impurities having κ < 1 will become enriched
in the liquid phase and are transferred to one end of the crystal. Multiple subsequent

Table 2.1: Examples of the segregation coefficient κ of different impurities in silicon [28].
impurity κ impurity κ

Al 0.002 O 0.25 - 1.25
As 0.3 P 0.35
B 0.8 Sn 0.016
C 0.07 Zn 10−5

Cu 4× 10−4
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refining processes can dramatically increase the purity of the sample. A purification ratio
of about 106 can be achieved for different impurities using typically 10 repeated refining
steps.
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3 Mechanical loss and its
measurement

The following chapter gives a short overview about the field of anelasticity as the origin
of mechanical loss in solids. After that the measuring and analysis procedures needed to
study intrinsic losses of solids are reviewed.

3.1 Anelastic behavior of solids

The origin of mechanical dissipation can be found in the elastic properties of a material.
It turns out that especially an anelastic behavior causes mechanical loss. For that reason
in this section an overview on the treatment of anelasticity is presented.

The well-known basis for an investigation of anelasticity is formed by the pure elas-
ticity as initially described by Hooke’s law. He stated a strict proportionality between
mechanical stresses σ and mechanical strains u in a purely elastic solid. In the simplest
one-dimensional case this statement reads

σ = Y u , (3.1)

where Y represents the constant of proportionality and is called Young’s modulus. The
generalization to a three-dimensional treatment leads to the introduction of stress and
strain tensors showing a rank of two. Also Young’s modulus is generalized to a tensor of
fourth rank, necessarily.

Inherent to this model is the absent of time. For this reason it describes an instantaneous
reaction of elastic materials. Thus, the reaction of a solid to an applied time-dependent
stress leads to a mechanical strain fully matching the temporal behavior of the applied
stress. It is clear that this assumption will break down when acoustic waves travel through
the solid. Such a non-static behavior sets in at the frequency of the first mechanical
eigenmodes of the solid. The latter depends on the material properties and the sample
dimensions and is typically in the range from some Hz for macroscopic vibrating reeds till
several MHz for micromechanical resonators.

But even at low frequency, i. e. in the static regime of Young’s theory, experiments
have shown a deviation from pure elasticity. If e. g. an external stress is applied to a
solid as a step function then Young’s model predicts the same temporal behavior also for
the observed strain. In the experiment such an instantaneous contribution is observed.
But also an anelastic creep is superimposed to it leading to a slow relaxation towards the
equilibrium strain. This behavior is demonstrated in fig. 3.1

Similar considerations hold for experiments applying a step-wise strain and measuring
the stress over time. An empirical model to explain the results of both experiments can
be found by the combination of springs and dashpots. Their combination to the network
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Figure 3.1: Anelasticity in a creep experiment. The application of a mechanical stress σ0

leads to an instantaneous strain u1 and a creep contribution u2 relaxing to the
equilibrium strain. The latter represents a typical anelastic effect.

presented in fig. 3.2 forms the basis for the model of the standard anelastic solid (SAS).
The working principle shall be illustrated by an applied strain. There the left spring just
gives a constant stress. The right path consisting of the dashpot and the spring shows
a different reaction. Here due to the fast application of strain the dashpot appears to
be extremely stiff and nearly all the strain is applied to the spring. This results in an
additional stress contribution via δY . Later the dashpot relaxes and in the end takes the
whole external strain. Then no stress is added by the right part leading to the discussed
creeping behavior.

Further the response of an SAS to harmonic vibrations is to be investigated. For that
purpose a quantitative analysis of the model system is carried out using the constitutive

Figure 3.2: Model network for the standard anelastic solid.
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equations of the spring and the dashpot as

σ = Y u , σ = ηu̇ = iωηu , (3.2)

respectively. With η = τδY the elastic behavior of the SAS is found in an effective elastic
constant as

YSAS = Y + δY
ω2τ 2

1 + ω2τ 2
+ iδY

ωτ

1 + ω2τ 2
. (3.3)

Here one obtains the unrelaxed modulus YSAS(ω → ∞) = Y + δY and the relaxed
modulus YSAS(ω → 0) = Y . These values also determine the strains u1 and u2 in the
creep experiments of fig. 3.2.
The imaginary component of YSAS introduces a phase lag between stress and strain.

Consequently, this phase lag leads to a mechanical energy loss that can be calculated as

dE = σdu = σu̇dt (3.4)

The integration over one period T leads to an energy change

∆E = −πŶ û2 sinϕ , (3.5)

where Ŷ and ϕ have been defined via YSAS = Ŷ exp(iϕ) and û represents the strain
amplitude. Then the mechanical loss is accessible by its definition as

φ =
1

2π

∆E

Etot

, (3.6)

with the total elastic energy Etot = 1/2Ŷ û2 resulting in

φ = sinϕ . (3.7)

For the approximation of small mechanical losses, i. e. δY � Y one finds

φ =
δY

Y

ωτ

1 + ω2τ 2
, (3.8)

which is known as a Debye peak in the literature (see e.g. [29]). The prefactor δY/Y is
typically known as the relaxation strength of a loss mechanism.

3.2 Experimental scheme of mechanical loss
measurements

The mechanical loss of solids can be probed in different ways. The two main experimental
approaches are acoustic attenuation spectroscopy based on ultrasonic pulses and the me-
chanical ring down spectroscopy. The former technique probes the mechanical loss with
high frequency pulses typically above 10MHz. The mechanical ring down spectroscopy
uses the intrinsic modes of the test samples that are typically in the acoustic band or

16



0 100 200 300 400 500 600 700 800 900
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time [s]

am
pl

itu
de

 [n
m

]

(a) (b)

Figure 3.3: (a) - Free decaying resonant mode of a sapphire test mass (dia. 76mm, thick-
ness 24mm, orientation: c-axis) at 36 kHz and 15K. (b) - Setup for cryogenic
mechanical loss spectroscopy used by the group in Jena.

slightly above. The typical operational frequency - and thus the frequency range of in-
terest - for gravitational wave detectors will be between 1Hz and a few kHz. For this
reason mechanical ring down spectroscopy is prefered in order to study the intrinsic losses
of optical components.

The object under investigation - typically a cylindrical bulk material or a thin flexure
- are excited by means of an electrical comb structure that is fed by an AC signal from a
high voltage amplifier. The frequency is tuned until it is in resonance with the intrinsic
mode of the sample at f0. After a certain amplitude, typically in the range from 1 to
100 nm, is reached the excitation is switched off and the subsequent free ring down is
recorded (see fig. 3.3).

The characteristic ring down time τ is the duration of the amplitude to decay from
the maximum to 37% (1/e) of its initial value. This ring down time is related to the
mechanical Q-factor of the resonance by means of

Q = πf0τ. (3.9)

The amplitude is recorded by means of a capacitive, inductive or optical read-out. A
preferable method is the use of a Michelson interferometer where one end mirror is formed
by the sample under investigation (see fig. 3.4(a)).

The mechanical Q-factor of the resonance is related to the intrinsic mechanical loss φ
in the case of Q� 1 (small damping):

φ = 1/Q (3.10)

and thus the mechanical loss can be determined by Q-factor measurements at the reso-
nances of the test sample.

The mechanical loss spectroscopy described above always measures the total mechanical
loss of the sample that can be summarised as:
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(a) (b)

Figure 3.4: (a) Optical read-out based on a Michelson interferometer used at the Glas-
gow measuring setup to investigate mechanical losses of bulk samples. (b)
Suspended test mass using a silk thread for mechanical loss measurements.

φtotal = φinternal + φexternal (3.11)

where φinternal is the internal loss of the material (the value that is to be investigated)
and φexternal is the sum of all external damping mechanisms, e.g. gas damping, friction
between sample and suspension, recoil losses, etc. All external damping sources have to
be very well known and reduced below the level of the intrinsic contribution by means of
sophisticated experimental techniques [1, 30,31].

However, even if the extrinsic losses can be excluded the mechanical spectroscopy only
reveals the sum of all inrinsic losses. Thus, it is necessary to change the sample material,
the sample geometry and its treatment in repeated measurements to increase or decrease
special intrinsic losses to understand their composition. Typically, the sum of the intrinsic
losses is dominated by a combination of thermo-elastic, phonon-phonon and impurity
induced damping. The current state of knowledge about the different loss mechanisms is
summarised in chapter 4.

3.3 Numerical calculation of mechanical mode shapes

A precise knowledge of the mode shape is important in order to be able to minimise exter-
nal losses and to understand well known intrinsic mechanical loss processes. As samples
with an arbitrary geometry and crystal symmetry should be analyzed a numerical calcu-
lation is the most convenient approach. Actually, the analysis of mechanical resonances
is a standard task for commercial FE packages. In our work we thus use ANSYS [32] and
COMSOL [33] for this purpose. Such an analysis demands the elasticity tensor and the
density of the material and yields the mode frequencies as well as the mode shapes and
energy distribution in the sample. Two modes are exemplarily shown in fig. 3.5.

Even if there are small systematic deviations in the calculated mode frequencies this
tool allows a reliable identification of the excited mode at least at low frequencies. This
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(a) fFE = 11 370Hz, fm =
11 670Hz

(b) fFE = 16 330Hz , fm =
16 890Hz

Figure 3.5: Selected mode shapes and calculated mode frequencies fFE of a cylindrical
quartz sample in z-cut (diam. 76.2mm, height 12mm). The measured fre-
quencies fm are about 3% higher than the calculated values. This could be
explained by slight variations in the elastic constants or the sample geometry.

represents the starting point for any quantitative loss analysis as e.g. in the case of
thermoelastic damping or for the investigation of lossy energy contributions by means of
the elastic dipole (see Sec. 4.6). Further also qualitative conclusions can be drawn as for
the damping due to the suspension. Finally the numerical calculation provides a valuable
tool in the measurement process. As the resonances in high Q-materials are very sharp an
excitation of these resonances is only effective in a small frequency regime. If the resonant
frequency is unknown a fine sweep of the excitational frequency is necessary which costs
a lot of time. Thus the numerical results guide the experiment for a faster identification
and excitation of elastic modes.
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4 Mechanical loss mechanisms in
solids

The model of anelastic relaxation presented in the previous chapter represents a purely
empiric theory. Thus, in the mentioned model there is no possibility to identify processes
causing the phase shift between the stress and strain and consequently a dissipation. In
this chapter the underlying effects leading to a phase lag will be identified and be explained
physically. This knowledge is crucial for a reliable loss minimization. It therefore preceeds
any systematic sensitivity increase in gravitational wave detectors or other highly sensitive
metrological setups.

4.1 Overview

Microscopical explanations for mechanical dissipation can be classified into two groups.
The first group of mechanisms are inherent even to perfect crystalline materials without
defects. Consequently, they mark main restrictions as they cannot be reduced to an
arbitrary amount by adjusting the purity. These processes are called to be intrinsic.
Thermo-elastic, phonon-phonon and electron-phonon damping can be found among them.
A second group is related to defects in the material. Typically the surface and point defects
are prominent examples for defects in crystals. Both mechanisms thus trigger mechanical
loss processes. Processes in this second group are called to be extrinsic and in principal
can be totally omitted by using an inifnitely large crystal with no impurities.

4.2 Thermo-elastic damping

Thermo-elastic damping (TED) is a well investigated loss mechanism. Since the first
explanation by Zener in 1937 [34] it has been widely investigated not only as a noise process
in gravitational wave detectors but also as the limiting factor for mechanical resonators in
the micrometer scale and as a foundation to build effective damping elements. The main
principle of thermo-elastic damping is explained in the following. Nearly any deformation
of a mechanical sample will cause a volume dilatation in the sample too. With respect to
the inverse effect of thermal expansion this volume dilatation will introduce heat into the
sample and lead to local temperature changes. Due to Fourier’s law a heat flow will set
in heading to countervail the temperature gradients. This heat flow increases the entropy
of the system and thus dissipates energy.

Another possible explanation considers thermal strain fields on the applied stress. Here
the adiabatic deformation only leads to a strain contribution in phase to the applied
stress. Due to the heat exchange additional thermal strains will change this behaviour.

20



As the heat flow marks no instant process, i. e. it takes time to transport thermal energy,
it introduces a phase shift between the thermal strains and the stresses. In analogy to
the standard anelastic solid this phase shift causes mechanical dissipation.

Zener’s original work covers the case of a rectangular beam under pure bending. It
gives a thermo-elastic loss of

φTE =
Y α2T

ρC

ωτ

1 + ω2τ 2
, (4.1)

τ =

(
h

π

)2
ρC

κ
. (4.2)

Here the loss amplitude is affected by Young’s modulus Y , the coefficient of thermal
expansion α, the temperature T and the specific heat per volume ρC. Further the char-
acteristic time for the heat flow τ is determined by the height h of the beam and the
thermal conductivity κ. In a second paper Zener applied his calculation to a circular
beam section [35]. There a modification for τ is necessary as follows

τ =
R2

2π 0.539

ρC

κ
. (4.3)

Here R represents the radius of the beam. In 2000 Zener’s theory has been refined by
Lifshitz and Roukes [36].

The presented load case of a beam under pure bending is especially interesting for
the noise analysis of GWD’s. There the suspension fibers can be identified as the beam
elements and their mechanical loss mainly determines the thermal noise of the suspension
structure. In the field of mechanical loss measurements Zener’s theory can be applied to
cantilever samples operated at bending modes. They typically possess a small thickness
compared to the other dimensions.

A model to calculate TED for arbitrary three-dimensional samples, e. g. cylinders,
demands numerical means. At first the elastic modeshape has to be determined. From
that a second, thermal analysis has to be performed with thermal loads derived by the
first analysis. Finally with the help of the temperature field in the sample the heat flows
can be integrated to obtain a value for the dissipated energy. The basis for the thermal
calculation can be found in the following relation for the entropy density

s = αijσij + ρCp
T − T0

T
, (4.4)

where α represents the tensor of thermal expansion, Cp the specific heat at constant
pressure and T0 the ambient temperature. Typically, the temperature fluctuations T −T0

remain small compared to the ambient temperature T0. Thus, the temperature term in
eq. (4.4) can be replaced by its first order contribution (T − T0)/T0 yielding the same
expression as given in [37].

To derive an equation for the temperature field we start at the conservation of thermal
energy. Here the introduced heat density q has to be transported by a heat flux ~k resulting
in

∂

∂t
q + div~k = 0 . (4.5)
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At this point no external heat sources are considered, which represents the conditions for
TED. In the next step ~k is replaced by Fourier’s law (~k = (−κij)∇T ) and the heat dq by
Tds. Inserting the entropy density given in eq. (4.4) yields

αijT
∂

∂t
σij + ρCp

∂

∂t
T − κij

∂2

∂xi∂xj
T = 0 . (4.6)

With a slight rearrangement and a further application of the approximation of small
temperature fluctuations (T ≈ T0) we arrive at

ρCp
∂

∂t
T − κij

∂2

∂xi∂xj
T = −αijT0

∂

∂t
σij . (4.7)

Notice that here the Einstein convention has to be used, i. e. one has to implicitly sum
over indices that occur more than once.

The structure of the above equation coincides with a simple heat equation. In this
analogy the right hand side of the equation represents heat sources originating from the
thermoelastic effect. They are caused by the applied stresses σij. Consequently, the results
of the elastic mode analysis, which is a standard task in FE codes, has to be inserted into
the heat conduction problem via σij. With that eq. (4.7) has to be solved for the resulting
temperature field.

Then the amount of energy dissipation can be calculated by an integration of the heat
flows or the work done by the thermal strains against the stress fields (see Refs. [38–40]).
Note that both approaches only produce the same results globally, i. e. for an integration
over the whole structure. Locally both results may significantly differ from each other.
To obtain a physically correct result for a locally resolved energy dissipation the approach
with thermal strains has to be used.

Exemplariliy the numerical computation of TED is illustrated on a cylindrical silicon
sample. The mode shapes of the anisotropic substrate have been investigated using a
finite element analysis. Starting from these results a thermal analysis revealed the level
of TED. The amount of heat flows in the sample and with it the level of TED is heavily
dependend on the respective mode shape. This dependence is presented for three modes
in fig. 4.1. There a spread of two orders of magnitude is visible. In the loss calculation
a minimum of TE damping is clearly visible at 120K due to the vanishing coefficient of
thermal expansion.

Since thermoelastic damping is inherent to microstructures the loss spectrum of a vi-
brating reed (cantilever) is presented in fig. 4.2. There the loss behavior at temperatures
above 150K is clearly dominated by thermo-elastic damping. The loss spectrum shows a
dip around 120K again reflecting the vanishing coefficient of thermal expansion at that
temperature. Nevertheless, other loss mechanisms lead to a finite measure of loss at that
point. For lower temperatures the thermo-elastic loss becomes significant again. Below
50K its influence ceases and other loss processes dominate the measured loss. In the
case of cantilevers the surface is a strong candidate to contribute significantly to the low
temperature loss.
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Figure 4.1: Numerical results of TED for a cylindrical silicon sample (diam. 76.2mm,
height 12mm). The cylindrical axis is oriented along the crystalline 〈100〉
direction. Further, the mode shapes and the frequencies of the presented
resonances are given. The mode plots show a deformation along the cylindrical
axis. Selected data from a loss measurement confirm the existence of the
predicted TE loss peak for the 24 kHz sample showing the highest TE loss.

4.3 Phonon-Phonon damping

Another intrinsic loss mechanism can be found in the interaction between phonons. This
process was discovered and described in connection to the classical attenuation measure-
ments of acoustic pulses in solids. In an intuitive picture the acoustic phonons that form
the acoustic pulse interact with thermal phonons excited in the solid and are scattered.
Such a collision is illustrated in fig. 4.3. Consequently, the collision removes energy from
the acoustic wave and represents an attenuation process.

In 1937 Landau and Rumer were the first to present a theory based on the picture above
[41]. Their theory is based on individual collisions between phonons. This assumption
of individual collisions is only valid if the phonon lifetime τ is large compared to their
oscillation period 2π/Ω (Ωτ � 1). Typically, the thermal motion of the lattice atoms
produces irregularities in the lattice. Due to this additional source of scattering this
thermal motion mainly determines the phonon lifetime. Consequently, this theory is likely
to break down at high temperatures where Ωτ falls below 1. There the lattice oscillations
are increased and lead to a reduction of the phonon lifetime. As thermal conductivity
is dominated by phonons carrying thermal energy, it can be used as a measure for the
lifetime. Collisions of phonons will reduce the thermal conductivity. From transport
theory it is known, that

κ =
1

3
ρCc2

Dτ . (4.8)

Please note, that only Umklapp-processes affect thermal conductivity. In contrast the
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Figure 4.2: Measured mechanical loss of a vibrating reed made of silicon (thickness ∼
110 µm). The line indicates the result of thermo-elastic damping due to the
theory of Zener.

phonon lifetime is also reduced by normal processes. Consequently, at low temperatures
where mostly normal processes occur the given expressions are likely to largely overesti-
mate τ . Further cD describes the phonon velocity and an averaged value of

3

c3
D

=
1

c3
l

+
2

c3
t

, (4.9)

can be calculated from the speed of longitudinal and transversal acoustic waves, cl and ct
respectively. A rough estimate shows a resulting lifetime in the order of 10−12 s at room
temperature. Typical resonant frequencies of macroscopic samples for loss measurements
are well below 1MHz. Thus, Ωτ is well below 1 and the theory of individual collisions of
phonons is not suited to analyze the results of resonant loss measurements.

A second interpretation of phonon-phonon damping was raised by Akhieser in 1939 [42].
In his approach the lifetime of phonons is assumed to be short compared to the phonon
frequency (Ωτ � 1). Then collisions effectively take place on scales that are much shorter
than the phonon wavelength. Consequently, the acoustic phonon can be treated as a
homogeneous background for the thermally excited phonons in the solid. We investigate
a volume element that is small compared to the phonon wavelength but large compared to
the phonon mean path between two collisions. Within this volume the mechanical strain
ε applied by the acoustic wave affects the phonon frequency as

∆ωq = ωq0γqε , (4.10)

with the Grüneisen parameter γq. The index q indicates the dependence of this parameter
from the momentum of the respective phonon. From this considerations the dissipation
process can be understood as follows. Phonons are bosons and thus their population
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Figure 4.3: Illustration of phonon scattering as an attenuation process in the propagation
of acoustic pulses. Here an anihilation process is shown where two incoming
phonons form the scattered phonon. In this process the acoustic phonon
(dashed) changes its wave vector ka and its frequency Ω and is removed from
the coherent motion of the acoustic wave.

follows a Bose-Einstein-statistic

g(h̄ωq) =
1

exp
(

h̄ωq

kBT

)
− 1

. (4.11)

An unloaded sample will thus exhibit the above equilibrium population of phonons. If
now an external strain is applied to the solid due to the Grüneisen parameter the phonon
energies are altered. Then the old population does not mark an equilibrium distribution
anymore. Due to this fact phonon-phonon collisions set in to bring the phonon population
to the new equilibrium. If the mean phonon path length is sufficiently small, this process
will run effectively within the investigated volume. In analogy to thermoelastic damping
this process can be viewed as a heat flow between different phonon branches. Such a heat
flow will produce an entropy increase and lead to dissipation. This view is also plausible
by an inspection of eq. (4.11). With a change of ωq the original population can still be
interpreted as an equilibrium population but for a higher temperature. Thus, an external
strain changes the temperatures of individual phonon branches and causes a formal heat
flow between them.

The reestablishment of the new equlibrium population typically takes a time in the
order of the phonon lifetime τ . Here the temporal delay between phonon population and
external strain represents the phase lag that causes mechanical loss. A rough model by
Bömmel and Dransfeld [43] analyzes the problem of only two groups of phonon branches.
The first group shows a vanishing Grüneisen constant while the other branches show the
same constant γ 6= 0. Then the phonon-phonon damping follows

φph =
CTγ2

c2
D

ωτ

1 + ω2τ 2
, (4.12)

where the phonon lifetime is typically taken from the thermal parameters and eq. (4.8).
In an application of the above equation to measured data, γ represents the single fitting
parameter. The remaining quantities are obtained by the use of material parameters.
Further, the validity of the fitted value of γ can be checked on experimental results for
the Grüneisen parameter by neutron scattering or third-order elastic constants.
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Figure 4.4: Measured mechanical loss of a cylindrical sapphire sample (diam. 76.2mm,
height 24mm). The line indicates the result of Akhieser’s theory for a
Grüneisen parameter of γ = 1.4.

The application of the presented Akhieser theory on the mechanical loss spectrum of
a sapphire sample is shown in fig. 4.4. At low temperatures the measured data exhibits
a loss peak around 40K where the loss is increased by the factor 10. Above 100K a
unregular variation of the measured data is visible. Finally above 250K there is another
clear increase of losses for increasing temperatures. Akhieser’s theory is able to reproduce
the measured data at temperatures below 80K. The red line in fig. 4.4 represents the
results of eq. (4.12) where only γ is left as a free parameter for a fit to the measurement.
In our plot a value of γ = 1.4 leads to the presented result and produces a fair fit to
the measured loss spectrum. Further, the presented value is in good agreement with
independent measurements of the Grüneisen parameter [44] revealing values between 1
and 3.

4.4 Electron-Phonon damping

A mechanical stress can also lead to an effective force on electrons in the material and thus
to an energy transfer to the electronic system. Any dissipation process in the electronic
system will then also occur in the mechanical loss spectrum. The interaction process
between the mechanical and the electronic system can be understood by a close analogy
to Akhieser losses given in Sec. 4.3. Here the external strain leads to a deformation of
the electronic dispersion curve. In the simplest model of a free electron gas the dispersion
shows a parabolic profile and is radially symmetric. The application of an external strain
breaks this symmetry. Then the current electron population marks no equilibrium state
any more and a redistribution sets in. This redistribution is closely connected to the
time between two collisions of electrons τel. As this measure also affects the electric
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conductivity σel it can be calculated with this material parameter via

σel =
Ne2τel
m

, (4.13)

where N is the electron density, e the electronic charge and m the electron mass. Even
if the analogy between electron and phonon losses is large one has to bear in mind that
electrons exhibit fermionic character while phonons represent bosons. Thus, a difference
in both models should occur.

Nevertheless most of the promising candidate materials are semiconductors or insula-
tors. With the largely reduced number of free charge carriers the presented model of the
free electron gas looses its justification. In a semiconductor typically only electrons at
lowest energy in the conduction band and holes at the highest energy of the valence band
determine the electronic behaviour. This is due to the fact, that a thermal excitation of
charge carriers happens along an energetical interval of kBT (≈ 40meV at room temper-
ature) while the fundamental band gap shows an energy around 1 eV. If the maximum of
the valence band or the minimum of the conduction band is found at a momentum dif-
ferent than the Γ-point mechanical loss can occur. For now a crystal exhibiting multiple
minima in the conduction band is assumed. These minima are called valleys and without
an external strain all show the same stress. The equivalent positions can be determined
by the symmetry operations of the crystal. An external strain can break this symme-
try. Then the energies of the equivalent valleys will split and a thermal redistribution of
electrons sets in. This redistribution over an electronic potential barrier leads to a phase
lag between the electron population and the external stress. Finally, energy is lost from
the strain as an elastic excitation to the electrons and a dissipation is observed. Typi-
cally such a process should follow the Debye theory for point defects as given in Sec. 4.6.
The deformation potential Ξ represents a key parameter in this process. It describes the
change in the valley potential with respect to an external strain ε for electronic losses

∆U = Ξε . (4.14)

In his PhD thesis [45] Lam discussed this process and gave an expression

φ =
σelΞ

2ω

ρc4
se

2
. (4.15)

Here the electric conductivity σel, the mass density ρ, the speed of sound cs and the
electron’s charge affect the loss. An estimate for highly doped silicon (σel = 44AV−1 m−1)
at quite high resonant frequencies (ω = 2π 100 kHz) with Ξ = 5 eV yields a value of
φ = 3× 10−11. This value is two orders of magnitude below the lowest reported loss data.
Thus, electron damping in silicon turns out to be negligibly small.
Further at low temperatures the number of free charge carriers decreases with respect to

the Fermi distribution. This effect additionally reduces the effect of electron damping. The
proportionality between carrier density and loss can be found in the electric conductivity
σel in eq. (4.15). For an n-doped semiconductor the electron density in the conduction
band reads

nC =
1

2
n0 exp

(
− ED

kBT

)[√
1 + 4

ND

n0

exp

(
ED

kBT

)
− 1

]
. (4.16)
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Here ND represents the donor concentration and ED the energetic distance from the donor
level to the conduction band. n0 is defined as

n0 =
1

4π3

(
2πkBTm

∗
L

h̄2

)3/2

, (4.17)

wherem∗
L is the effective mass of electrons in the conduction band minimum. Exemplarily

the temperature dependence for the electron density is illustrated on the case of silicon
doped by phosphor. The results for different doping levels ND are presented in fig. 4.5.
There weakly doped silicon shows a sharp step in the electron density at 40K. Above
this temperature all donors are ionized and the electron density in the conduction band
coincides with the doping concentration. This region represents the impurity exhaustion.
For an increased doping concentration the step becomes broader. At the extreme doping
of 1018 cm−3 even at 300K not all donors are ionized.
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Figure 4.5: Number density of electrons in the conduction band for an n-doped silicon
sample (here: phosphor donors). The numerical values indicate the donor
concentration ND. The doping level of phosphor was assumed to be ED =
45meV below the conduction band minimum.

If the material is piezoelectric another loss mechanism becomes possible. Due to the
piezoelectric effect a spatial gradient of the electron potential emerges and leads to an
electric force on the electrons. This force leads to a flow of electrons which counteracts
the piezoelectric field. Again the finite collision time of electrons causes a phase shift
between the electric current and the strain which results in the dissipation of mechanical
energy. A microscopic interpretation can also be found in the flow of electrons that causes
an entropy increase. This process is in complete analogy to thermoelastic damping and
can be treated in the same way.

Another loss mechanism is discussed by Lam [45]. He investigates the interaction
of electric dipoles in the material with the electric field caused by the strain. Again
a thermally activated reorientation of the dipole is likely which should be described in
analogy to point defects. The resulting electrical field reads

~E = ∇
(

Ξε

−e

)
, (4.18)

28



leading to a mechanical loss of

ϕ =
ω2Ξ2

4πe2c4
sρ
ε2 . (4.19)

Here cs represents the speed of sound and ε2 the dielectric loss, i. e. the imaginary part
of the dielectric constant.

Also impurities are able to induce mechanical loss to semiconductors or even insulators.
The underlying loss mechanism is best illustrated at the electronic band structure. An
impurity can enter the band gap and form a bounded state exactly as in the typical doping
process of semiconductors. Typically, a hole or an electron accompanies the defect. This
additional charge carrier itself owns different physically equivalent sites depending on the
defect and crystal symmetry. If an external strain splits the energy of such a symmetric
defect, an electronic redistribution occurs and results in mechanical loss. This loss process
in principle follows the theoretical description of point-induced defects, but emerges from
redistributing electrons instead of atoms.

4.5 Surface related damping

An intrinsic defect to all real crystals as a consequence of their finite dimensions is found
in the surface. Of course these boundaries break the crystal’s translational symmetry and
influence also the mechanical loss behavior of real samples. Some examples of possible
microscopical situations at the surface are presented in fig. 4.6. Atoms at the surface
experience a smaller number of neighbours and typically exhibit unbound electrons which
are highly reactive. These electrons known as dangling bonds can flip in the potential of
the crystal and cause mechanical loss. Further they can be saturated by impurity atoms
from the environment. A special case of this situation can be found in the hydrogenization
of this bonds, i. e. a technical saturation of dangling bonds with hydrogen. Then the
newly bound atoms will interact with the crystal potential and can cause mechanical loss.
Further also dust particles are likely to be bond to the surface.

Figure 4.6: Possible microscopical configuration at the surface of crystals, which are likely
to cause mechanical loss. (a) - Particles bonded to the surface, (b) - open
(dangling) bonds, (c) - terminated surface (here: hydrogen-terminated), (d) -
micro-cracks in the surface layer.

Our selection points up the huge variety of possible loss mechanisms at the surface.
For this reason the surface can drastically affect the mechanical loss especially of small
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structures. Empirical theories have been developed to characterize the surface loss. These
theories are based on the assumption of a small boundary layer at the surface as proposed
by Gretarsson and Harry [46]. They calculate the energy stored in the surface layer and
by a variation of the surface to volume ratio finally estimate the loss contribution of the
surface. By this method only a dissipation depth ds is obtainable. For the most interesting
case of the same elastic constants of bulk and surface it gives [46]

ds =
1

φbulk

∫
φ(z)dz , (4.20)

representing an averaged mean of the spatially dependend surface loss φ(z). Penn et al.
[47] collected existing loss measurements on two types of fused silica. Using the presented
model of surface loss and additionally thermoelastic damping they obtain an extremely
small value of φ = 3× 10−10 as the pure bulk loss for fused silica at 100Hz. The surface
loss is directly proportional to the surface-to-volume-ratio and follows

φsurf = αs
S

V
. (4.21)

In their calculation of the averaged loss parameter αs a value of 6.5 pm was found for
fused silica [47]. The same analysis has been repeated for silicon samples. In their work
Nawrodt et al. [48] present a decreased value of αs = 0.5 pm for silicon samples.

4.6 Point-defect induced damping mechanisms

Another well known loss mechanism is caused by the motion of defects in otherwise perfect
crystals. Typically, this process is discussed on a point defect in a double well potential.
The basics of this loss mechanism is illustrated in fig. 4.7.

(a) ε = 0 (b) ε 6= 0 (c) ε 6= 0

Figure 4.7: Influence of an external stress on the defect distribution in a double well
potential. The diagrams present state energy over a reaction coordinate, e. g.
a displacement or a rotation angle. The symmetric double well potential (a) is
deformed by an external strain (b). Due to this deformation the equilibrium
state is changed and a redistribution driven by thermal energy sets in (c).

At first the energetic potential for a defect within the crystal is shown in fig. 4.7(a) for
an unloaded material, i. e. vanishing strain ε = 0. In this potential two stable positions
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Figure 4.8: Measured mechanical loss of a cylindrical quartz sample in x-cut (diam.
45mm, height 50mm). The blue line indicates the mechanical loss of sodium
impurities by means of the Debye theory for point defects.

(marked as -1- and -2-) are separated by a potential wall of the height Ea. The thermal
energy in the system allows the defects to pass this barrier and thus to establish a dynamic
equilibrium population. This equilibrium distribution is theoretically well described by a
Maxwell-Boltzmann distribution. Applying an external strain - as in a resonant mechan-
ical loss measurement - can lead to a deformation of the defect potential (see fig. 4.7(a)).
If this deformation alters the energy levels of the stable states relative to each other a
redistribution of defects will set in. But only defects with an energy above the barrier Ea

are allowed to change their state. Thus the typical rate of a redistribution process can be
described as

1

τ
=

1

τ0

exp

(
− Ea

kBT

)
, (4.22)

where τ0 is a process dependend constant. Due to the thermally driven redistribution
there are more defects in the energetically lower state. To change the defect potential
an external strain has to perform work on the defects to change the potential. This
represents the microscopical explanation of the mechanical loss introduced by defects.
The phenomenological phase lag in this process appears between the applied strain and
the defect population. Consequently, for point defects the loss peak follows a Debye law

ϕ = ∆
ωτ

1 + ω2τ 2
, (4.23)

with the relaxation strength ∆ and τ given above. Together with eq. (4.22) the maximum
loss occurs at the condition

ωτ = ωτ0 exp

(
Ea

kBT

)
= 1 . (4.24)
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Figure 4.9: Defect potential of sodium in quartz. The potential barrier heights are acces-
sible via loss measurements.

Thus, a plot of lnω on the inverse temperature 1/Tmax of the maximum loss yields a linear
graph

lnω = ln
1

τ0

− Ea

kB

1

Tmax

. (4.25)

This so-called Arrhenius plot allows the determination of the activation energy of the
defect and its characteristic time constant τ0.

A prominent example of a defect induced loss mechanism is found in crystalline quartz.
There aluminum is incoorporated as an silicon intersitial in the lattice. An alkali atom is
necessary to compensate the charge of the defect. Among the alkali elements sodium was
identified [49] to show a large dissipation peak around 13K at frequencies around some
10 kHz. This peak is also visible in the Jena samples. The typical behavior is illustrated in
fig. 4.8. Investigating these mechanical loss peaks leads to the defect potential presented
in fig. 4.9. There the barrier heights in the sodium potential have been derived from the
mechanical loss measurements.

Additionally an Arrhenius plot for the same defect peak but another quartz sample is
exemplarily shown in fig. 4.10. The analysis of this diagram yields an activation energy
of (59± 3)meV and is in good agreement with Martin et al., who reported 57meV [49].

Not all applied strains will lead to an asymmetric deformation of the defect potential.
With respect to the given defect and lattice symmetries one is able to identify strains that
only allow a symmetric deformation. As a symmetric deformation does not give rise to
any redistribution of defects no loss will be visible for these strain components. Nowick
and Heller [50, 51] systematically investigated these symmetry effects in their theory on
the elastic dipole. They also present tables where the group theoretical conditions on the
existence of mechanical loss is obtainable for arbitrary crystal and defect symmetries.

The concept of the elastic dipole shall be illustrated on the application to mechanical
loss in silicon. Mechanical loss spectra in silicon show a peak around 120K with an
activation energy of ca. 170meV. This peak is often discussed in connection to oxygen
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Figure 4.10: Arrhenius plot of the Na defect peak near 50K for a cylindrical quartz sample
in z-cut (diam. 76.2mm, height 12mm). The line indicates the linear fit of
the measured data and yields an activation energy of (59± 3)meV.
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Figure 4.11: Relaxation strength vs. shear energy of the investigated modes for a cylindri-
cal silicon sample (diam. 65mm, height 70mm). The linear behavior follows
the predictions of the theory for the elastic dipole.
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impurities. E. g. Nowick and Heller discuss the trigonal Si-O-Si defect in the cubic silicon
lattice in their original work [50]. Due to their theory this constitution should give rise
only to a breaking of symmetry for shear components of stress and strain. Consequently,
the peak height should scale with the shear energy of the mechanical mode. For this
reason the shear energy of measured modes have been calculated numerically by means
of FEM. The relative strain energy was then plotted over the relaxation strength ∆ taken
from the measured spectra for different mechanical modes. The result of this procedure
is presented in fig. 4.11. There a linear dependence between relaxation strength ∆ and
the ratio of shear energy is observed. Even if this result follows the predictions by Nowick
and Heller it is no unique proof of the microscopical loss process. Especially the measured
activation energy of 170meV contradicts a reorientation of bonds. As this process should
also be responsible for a diffusion of oxygen, the energy scale in diffusion experiments
should show the same order. Nevertheless, these experiments [52] yield values in the
range of 2.5 eV. Thus, the microscopical origin of the uncerlying mechanical loss process
is not understood yet.
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