Core-Collapse Supernova and Long-Soft GRB Science Opportunities

Christian David Ott

cott@tapir.caltech.edu

Overview:

20 Minutes to convince you that Stellar Collapse, Core-Collapse
 Supernovae, and Long-Soft GRBs are exciting Science Targets for ET –

-> Gravity Bombs: The most energetic explosive events in the universe

- Core-Collapse Supernovae
- Accretion-induced collapse of white dwarfs to neutron stars.
- Long-Soft Gamma-Ray Bursts

-> Science to be done with ET GW observations:

- The mechanism of core-collapse supernova explosions.
- Catching Unnovae witnessing black hole formation.
- Seeing the unseen observing EM silent/obscured CCSNe and AICs.
- The precollapse spin of massive stars.
- Equation of state (EOS), composition, and
 structural properties of hot nuclear matter.

Why do we care about Supernovae?

SNe are the main cosmic polluters.

- Dynamical impact on galaxy evolution.
- Stellar collapse:
 The making of neutron stars and black holes.
- Cosmic standard candles.

Core-Collapse Supernovae

- Energy reservoir: few x 10⁵³ erg (100 [B]ethe)
- Explosion energy:~1 B

- Time frame for explosion:
 ~0.3 − 1.5 s after bounce.
- BH formation at baryonic PNS mass $\geq 1.8 2.5 M_{SUN}$.

The Supernova Problem:
What is the mechanism
of shock revival?

Variation of the Theme: AIC

- Collapse of accreting, probably rapidly rotating White Dwarf.
- Neutrino-driven or magnetorotational explosion
- Explosion probably weak, subluminous, little Nickel-56.
- Potential birth site of magnetars.

Newtonian Radiation-MHD Simulations with VULCAN/2D

Magnetic field lines in M15B11UP2A1H of Burrows, Dessart, Livne, Ott, Murphy '07.

ismod2p_r04k B-Field

Time = -178.5 ms Radius = 100.00 km

Acoustic Mechanism

[Burrows, Livne, Dessart, Ott, Murphy 2006, 2007b/c, Ott et al. 2006]

 SASI-modulated supersonic accretion streams and SASI generated turbulence excite lowest-order (I=1) g-mode in the PNS. f ≈ 300 Hz.

- g-modes reach large amplitudes
 ~500 ms —1 s after bounce.
- Damping by strong sound waves that steepen into shocks; deposit energy in the stalled shock.
- ~1 B explosions at late times.
- (1) hard to simulate; unconfirmed
 - (2) possible parametric instability, limiting mode amplitudes. [Weinberg & Quatert'08]

SN Mechanisms and Their Multi-D Features

[Ott 2009, CQG 26, 204015]

Neutrino Mechanism

Convection and SASI

MHD-Jet Mechanism

Rotation

Acoustic Mechanism

Protoneutron Star Pulsations

Dominant Multi-D Processes

Model GW Signals from Core-Collapse Supernovae

 $t - t_{bounce}$ (ms)

[Ott 2009]

Characteristic Strain Spectra at 10 kpc

Important:

Emission frequencies contain encoded information on (Proto-)NS structure and rotation.

Neutron Star Structure

Nearby Core-Collapse Supernovae

Core-collapse SNe within 5 Mpc since the beginning of LIGO operations:

SN	Host Galaxy	Date	Туре	Distance
$2008iz^1$	M 82	20090515 [2]	II	$\sim 3.5 [3]$
2008bk	NGC 7793	20080325 [4]	II-P	~ 3.9 [5]
2005af	NGC 4945	20050208 [6]	II-P	$\sim 3.6 [5]$
2004dj	NGC 2403	20040731 [7]	II-P	$\sim 3.3 [5]$
2004am	M 82	20040305 [8]	II-P	$\sim 3.5 \ [3]$
2002kg	NGC 2403	20021026 [9]	IIn	$\sim 3.3 [5]$

¹ Radio supernova, not observed in the optical. Explosion in late January 2008.

Characteristic Strain Spectra at 5 Mpc: ~0.5 to 1 CCSNe / year

Unnovae

- Core collapse events that do not lead to explosion.
- May be common in stars of M > 25-35 M_{Sun}.
- EM signature:
 Disappearing star.
- BUT: strong
 GW signature and
 neutrino signature.
- LSST and other high-cadence EM surveys will be looking for unnovae.
- ET: sensitive to extragalactic unnovae that may be missed by surveys.

- ET:
 (1) Sensitive to
 extragalactic unnovae potentially
 missed by surveys.
- (2) Can complement data on unnovae: e.g., mass of star, mass of PNS at BH formation.

Failing CCSNe & BH Formation

- 1) There is no direct/prompt BH formation.
- 2) Route 1 to a BH: Collapsar Type I [Heger et al. 2003
 - Explosion fails.
 - No EM signal, only GWs and neutrinos.
 - BH forms on accretion timescale. τ_{BH} determined by (1) Stiffness of the nuclear EOS. (2) Accretion rate
 <- progenitor structure.
- 3) Route 2 to a BH: Collapsar Type II
 - Weak explosion, subsequent fall-back accretion. [Zhang & Woosley 2008]

Probing BH Formation with GWs

• Nonspherical collapse of a (Proto-)NS to a BH

Emission dominated by BH QNM as BH rings down to Kerr.

$$f_{200} = 14.4 \left(\frac{M}{M_{\odot}}\right)^{-1} (1 - 0.165(1 - j)^{0.355}) \text{ kHz} ,$$

$$f_{220} = 49.4 \left(\frac{M}{M_{\odot}}\right)^{-1} (1 - 0.759(1 - j)^{0.1292}) \text{ kHz}$$

 M_{NS} = 2 M_{SUN} -> f_{QNM} ~ 6 KHz; decreases as BH accretes more matter. [see discussion in Ott 2009]

Gamma-Ray Bursts BATSE 4B Catalog **Short-hard GRBs:** Originating from **Observations:** compact binary mergers (?) long-soft GRBs related to core-collapse SNe 40 NUMBER 20

• (At least) 2 classes of GRBs: Short hard $(T_{90} < 2 \text{ s})$, long soft $(T_{90} > 2 \text{ s})$

T₉₀ (seconds)

10.

100.

1000.

0.001

0.01

0.1

Long-Soft Gamma-Ray Bursts

- **Highly-beamed EM emission**, most likely aligned with axis of rotation. Energies comparable to SN explosion.
- Ultimate source of energy: Gravitational collapse.
 Mediators: Rapid rotation & MHD effects
- ~1% of massive stars sufficiently rapidly rotating to make a long-soft GRB. (But: Not all can make GRBs, not all GRBs pointed towards us.)
 - -> GRBs extremely rare in the local universe; closest GRB at ~40 Mpc.
- Variety of theoretical long-soft GRB models;
 some that are favored:
 - Collapsar type I (no SN explosion; star blown up by GRB)
 - MHD Hypernova + Collapsar (explosion before BH)
 - MHD Hypernova + Millisecond Magnetar

GWs from Long-Soft GRBs

- pre-BH-formation GW signature identical to rapidly rotating core-collapse supernova.
- BH-torus system crucial for Collapsartype L-S GRB. Torus will persist for duration of central engine operation.

• GWs:

Torus will be unstable to nonaxisymmetric perturbations.

- multiple local density maxima ("clumping", fragmentation),
 spiral density waves redistributing angular momentum.
 Episodic destruction of torus?
- GWs: elliptical polarization, frequency: 2 x ISCO frequency, set by BH mass (\sim 2 5+ (?) M_{Sun}) and spin. **So far only back of the envelope estimates**.
- Collapsar vs. Magnetar smoking GW gun:

BH formation signal and/or shut-off of signal from NS dynamics before/during GRB electromagnetic emission [see Corsi & Meszaros 2009].

Summary

 GW observations are crucial for our understanding of stellar collapse and related explosive phenomena.

Einstein Telescope:

- Potential to answer pressing astrophysical questions with GWs:
 - Mechanisms of Core-Collapse Supernovae.
 - Central Engines and Progenitors of Long-Soft GRBs.
- **Astrophysics Reach:** adv. LIGO needs to get lucky to see a CCSN. ET is virtually guaranteed to see at least 0.5 CCSNe per year.
- Determine/constrain physical parameters of collapsing and exploding stars.
- Add to the multi-messenger mix & find unnovae and weak explosions hard (or impossible) to see in EM.
- Additional major pay-off beyond Astrophysics:
 Constrain nuclear physics at high density and energy.