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Black-hole spectroscopy, that is, measuring the characteristic frequencies and damping times of
different modes in a black-hole ringdown, is a powerful probe for testing deviations from the general
theory of relativity (GR). In this work, we present a comprehensive study on its ability to identify
deviations from the spectrum of a Kerr black hole in GR. Specifically, we investigate the performance
of black hole spectroscopy on a diverse set of theoretically motivated as well as phenomenologically
modified spectra. We find that while the signal-to-noise ratio ρRD in the ringdown required to iden-
tify a modification to the GR Kerr black hole spectrum depends on the details of the modifications,
a modification that introduces ∼ 1% shift in the fundamental mode frequencies can typically be dis-
tinguished with ρRD ∈ [150, 500]. This range of ρRD is feasible with the next-generation detectors,
showing a promising science case for black hole spectroscopy.

I. INTRODUCTION

Gravitational waves (GWs) with characteristic fre-
quencies and damping times are radiated as the distorted
black hole (BH) formed during a binary BH merger re-
laxes into its final stable state. This signal is called the
ringdown and comprises of a linear superposition of the
spectral modes of the BH, known as the quasi-normal
modes (QNMs). We can obtain the QNMs by solving
the BH perturbation equations [1–3] and the ringdown
signal can be used to validate dynamics in linear strong
field regime. The QNM spectra of a perturbed BH in the
general theory of relativity (GR) are obtained by solving
Teukolsky’s equation [4] and under the Kerr hypothesis
[5, 6] i.e., that the remnant BH in binary BH coalescence
relaxes to a Kerr BH.

BH spectroscopy [7], defined as measuring QNM spec-
tra from ringdown signals, allows to put forth consistency
tests of the joint hypotheses that

1. the asymptotic equilibrium state of the remnant is
described by the Kerr metric a.k.a., the Kerr hy-
pothesis and

2. the dynamics of the perturbed Kerr BH is governed
by Teukolsky’s equation, i.e., (linearized) GR dy-
namics.

Further, BH spectroscopy can observationally validate
the no-hair theorem obeyed by BHs in GR; it demands
that all aspects of a Kerr spacetime, including its QNM
spectrum, be fully characterized by just two parameters.
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Often and most naturally, the two parameters are chosen
as the mass Mf and spin χf of the BH. If more than two
QNM parameters are measured, it can be verified that
different pairs of QNM parameters solve for the same
Mf and χf . This allows us to perform a null test of the
no-hair theorem.

There has been much focus in the literature on the fea-
sibility of measuring the subdominant QNM modes and
performing null tests to validate the underlying theory
of gravity as GR with BH spectroscopy [8–20]. In this
study, we concentrate on a complementary aspect and
investigate the ability of BH spectroscopy to identify de-
viations from GR when the spectrum is not described by
the GR Kerr QNMs. We perform a comprehensive study
utilizing the publicly available QNM spectra in various
modified theories as well as two phenomenological modi-
fications and assess the performance of BH spectroscopy
to differentiate them from a GR Kerr BH spectra. We
then investigate the signal-to-noise ratio ρRD in the ring-
down at which different modified theories of gravity can
be distinguished from GR using BH spectroscopy. We
find that the required ρRD depends on the details of the
QNM spectra in a given theory and on their degeneracies
with the GR Kerr BH spectra in the mass-spin space.
However, at a broad level, we observe that ρRD ≥ 150
is required to confidently identify modified theories that
produce ≤ 1% deviation in the dominant mode from GR
using BH spectroscopy (c.f., [8, 9] for a detailed study on
expected ρRD for measurability of QNM parameters with
the next-generation GW detectors).

The remainder of this paper is organized as follows. In
Section II we outline the conceptual structure adopted
for this study to test the no-hair theorem using BH spec-
troscopy. In Section III, we detail the modified QNM
spectra used in this study. Then, in Section IV we sum-
marize the setup and implementation used to perform
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this study. This is followed by the results in Section V
and a discussion of their implications in Section VI.

II. TESTING THE NO-HAIR HYPOTHESIS
WITH BH SPECTROSCOPY

The ringdown waveform observed at asymptotic infin-
ity can be approximated as a linear superposition of a
countably infinite set of (complex) QNMs with

ωlmn = 2πflmn − i/τlmn. (1)

Here flmn and τlmn are the characteristic frequencies and
damping times of the spectral modes. (l,m, n) index
the mode’s angular, azimuthal and overtone numbers.
As in any perturbation theory, the excitation amplitude
of the modes depend on the initial perturbation condi-
tions; for a binary BH merger these are set largely during
the plunge-merger phase. A quasi-circular merger excites
(2, 2, 0) dominantly, and depending on the initial binary
BH’s mass ratio and spins, the most prominent subdom-
inant angular modes can be {(3, 3, 0), (2, 1, 0), (4, 4, 0)}
[21–28].

To outline our setup, let us consider a ringdown where
more than two QNM parameters are measurable, and
a case where we have identified its QNM indices. The
minimum ρRD required for this has been investigated in
studies such as [24, 29–31]. If the underlying theory of
gravity is GR and if the Kerr hypothesis holds, we can
invert any pair of QNM parameters, preferably the fre-
quency and damping time of the dominant mode, to infer
the mass and spin of the BH –

{f220, τ220} → {MKerr
f , χKerr

f }. (2)

From this mass and spin estimate, we can compute the

full set of QNM spectra of the Kerr BH. Let f
(infer)
lmn be

the inferred subdominant mode frequency

{MKerr
f , χKerr

f } → f
(infer)
lmn . (3)

Here we use the superscript (infer) to differentiate

f
(infer)
lmn from f

(meas)
lmn which are the frequencies mea-

sured from the ringdown signal. While a similar argu-
ment holds for QNM damping times, subdominant mode
damping times are poorly measured [8, 22, 32] and there-
fore, we focus on tests using solely the subdominant mode
frequencies.

A null test can be performed by checking if the rel-
ative difference between the inferred and the measured
quantity is compatible with zero. We define the relative
difference as

δflmn =
f
(meas)
lmn − f

(infer)
lmn

f
(infer)
lmn

. (4)

We can infer steps (2)-(4) through a convenient
reparametrization of the waveform during the parame-
ter estimation. We briefly summarize this and point the
reader to a detailed treatment in [33].
A generic modified QNM spectrum can be phenomeno-

logically written as

flmn = fKerr
lmn (Mf , χf )(1 + δflmn) , (5a)

τlmn = τKerr
lmn (Mf , χf )(1 + δτlmn) , (5b)

where {Mf , χf} are the true values of the final mass
and spin, and {δflmn, δτlmn} are the relative shifts of
the spectrum w.r.t. the QNM spectra of a GR BH.
{δflmn, δτlmn} can be non-trivial functions of {Mf , χf}
and of the physical parameters of the modified theory
such as the additional coupling constants or charges. At
this stage of setting up the formalism, we do not differen-
tiate between a modification to the underlying theory of
gravity and a modification in the nature of the compact
object.
Now, notice that {δf220, δτ220} are redundant param-

eters because we can always find a pair {M̃f , χ̃f} of ef-
fective final mass and spin that satisfy

f220 = fKerr
220 (M̃f , χ̃f ) , (6a)

τ220 = τKerr
220 (M̃f , χ̃f ) . (6b)

The subdominant modes can be re-expressed as

flmn = fKerr
lmn (M̃f , χ̃f )(1 + δ̃flmn) , (7a)

τlmn = τKerr
lmn (M̃f , χ̃f )(1 + δ̃τlmn) , (7b)

for (lmn) ̸= (220). Further, the effective shifts

{δ̃flmn, δ̃τlmn} satisfy

fKerr
lmn (Mf , χf ) (1 + δflmn) = fKerr

lmn (M̃f , χ̃f )(1 + δ̃flmn) ,
(8a)

τKerr
lmn (Mf , χf ) (1 + δτlmn) = τKerr

lmn (M̃f , χ̃f )(1 + δ̃τlmn) .
(8b)

For the QNM spectrum of a Kerr BH in GR,
{δflmn, δτlmn} vanish; therefore {M̃f , χ̃f} = {Mf , χf}
and {δ̃flmn, δ̃τlmn} vanish. We set up our framework to
identify departure from the GR Kerr BH QNM spectrum
by constraining the effective shifts away from zero.

Note that the mass and spin appearing in Eq.s (2)-(3)
are not the true values {Mf , χf} but rather the effec-

tive values {M̃f , χ̃f}. We emphasise that we can only
measure the effective final mass and spin, and not the
true values corresponding to the BHs. While developing
a framework for observational test, the effective (mea-

sured) parameters deviations δ̃’s are the instrumental
variables 1. Similarly, the magnitudes of the δ’s are not

1 Note also that if one is not interested in testing the no-hair the-
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directly accessible in BH spectroscopy and we can only
estimate δ̃’s. In Section III, we inspect modified QNM
spectra and show that δ̃ can be significantly different
from δ.

III. MODIFIED QNM SPECTRA

In this study, we quantify the ability of BH spec-
troscopy to constrain δ̃flmn away from zero for various
class of modifications to the Kerr BH spectrum (c.f., [35–
38] for other works on BH spectroscopy in the context
of modified theories of gravity). Given the lack of a
best-candidate theory for modified gravity and the fact
that QNM spectra in modified theories are available in
a very few theories [39–54], of which even fewer theories
have QNMs computed at a beyond-leading order in BH
spins [49, 50], we consider both publicly available modi-
fied spectra and phenomenologically modified spectra.

The spectra are chosen to encompass a variety of mod-
ifications to stress-test the ability of spectroscopy to dis-
tinguish them from a GR Kerr spectrum. We don’t con-
cern ourselves with the physical plausibility of these mod-
ifications. Below we describe the modifications to the GR
Kerr BH spectrum used in this study:

• EdGB: The Einstein-dilaton-Gauss-Bonnet theory
[55, 56] is a modified theory of gravity that intro-
duces a dilaton scalar field that is non-minimally
coupled to higher orders of the curvature, specifi-
cally to the Gauss-Bonnet invariant. The BHs in
EdGB have a scalar hair as they are endowed with
a monopole scalar charge. However, this charge
is not an independent parameter but it is a “sec-
ondary hair” [57], i.e., it is completely determined
by the mass and spin of the BH and by the coupling
constants of the theory. The QNMs of EdGB BHs
at the next-to-leading order in the spin are derived
in [49]. The numerical approximations in [49] re-
strict the validity of the spectrum to ζEdGB ≲ 0.4,
where ζEdGB = αEdGB/M

2
f and here αEdGB is the

coupling constant of the theory. Further, the fi-
nal spins χf ≳ 0.3 can be potentially outside the
range of validity of the O(χ2

f ) expansion. To miti-
gate these effects, we consider the Padé resummed
version of the spectrum provided in [49]. Note that
the EdGB QNMs break isospectrality [58] between
axial and polar sectors due to the non-minimal cou-
pling of the scalar field. In this work, we choose to
focus on the spectrum corresponding to the polar
sector.

orem, the signals can be analyzed by assuming the Kerr BH
spectrum (i.e., setting all δ’s to zero) and recovering posterior
estimates of the mass and spin. The posteriors so obtained will
generally differ from the posteriors of {M̃f , χ̃f}. This means that

{M̃f , χ̃f} obtained here cannot be used to gauge the performance
of tests like the Inspiral-merger-ringdown test [34].

• Kerr-Newman: The Kerr-Newman spectrum for
GW perturbation is derived in [59, 60] at first order
in the final spin expansion (c.f., [61] for a pertur-
bative expansion in the electric charge). There is
strong numerical evidence that the Kerr-Newman
spectrum is isospectral, which is confirmed by the
full non-perturbative analysis in [50]. Therefore,
unlike in the EdGB, there is no ambiguity in choos-
ing polar or axial sectors in its modified spectrum.
Note that a Kerr-Newman BH becomes extremal at
charge-to-mass ratio Q = (1 − χ2

f )
1/2 but we only

consider values of Q away from this limit.

• Horndeski: The Horndeski action gives a general
scalar-tensor gravity with second order equations of
motion [62]. The Horndeski field equations admit
standard GR BH solutions under various conditions
[63]. Linear perturbations around slowly rotating
Kerr BHs were studied in [54] for the sub-class of
Horndeski theories in which GW propagates at the
speed of light. They show that the equations are
reduced to a massive scalar perturbation with an ef-
fective mass parameter µ. Although the spectrum
does not correspond to perturbations in GW sector,
in principle, it can be sourced by the GW sector,
and we expect imprints of these frequencies in the
GW signals [64]. In this work, we only look at the
QNMs in scalar sector presented in Eq.s (34)-(35) of
[54]. Note that this spectrum reduces to the scalar
perturbations of the Kerr BH in the limit µ → 0;
therefore, to augment our battery of modifications,
we linearly re-scale it to recover the gravitational
GR Kerr BH spectrum in the limit µ → 0 and pro-
mote it as yet another modified spectrum. We re-
mind that for this work, we are interested in study-
ing the performance of BH spectroscopy to distin-
guish a non-Kerr GR spectrum and do not aim to
put bounds on any given modified theory/spectrum
in particular.

• dCS: In dynamical Chern-Simons (dCS) theory
[65], a scalar field is non-minimally coupled to the
higher-curvature Pontryagin invariant, resulting in
a breakdown of parity symmetry. Rotating BHs
in dCS have a secondary hair in the form of a
monopole scalar charge [66]. The QNM spectrum
of dCS BHs were computed in [51] at the leading
order in the spin and at second order in the non-
minimal coupling constant of the scalar field αdCS

(see also [67]). In the following we will use the di-
mensionless coupling ζdCS = α2

dCS/M
4
f . Here, we

are extrapolating the spectrum in [51] beyond the
small spin approximation but this is not a critical
concern for our study. Also, the non-minimal cou-
pling of the scalar field breaks isospectrality and
therefore, similar to EdGB we consider the polar
sector of the dCS spectrum.

• Delta: We generate an ad-hoc phenomenological
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spectrum by modifying the frequencies of all modes
by a constant relative shift, flmn = fKerr

lmn (1 + ∆).
We also choose to leave all damping times un-
changed.

• Delta220: We modify only the the frequency of the
dominant mode f220 = fKerr

220 (1 + ∆220) and leave
all other mode frequencies and damping times un-
changed.

The above scenarios are distinct modifications to the
GR Kerr BH spectra where the no-hair hypothesis can
be violated. While Kerr-Newman BHs deviate from the
Kerr background due to the presence of a “primary hair”
(the electric charge), in the case of EdGB and dCS
BHs the background possesses a “secondary hair” (the
monopole scalar charge). Further in the Horndeski BHs
we consider here, the background coincides with Kerr.
Moreover, note that in all the theories here, the devia-
tions from GR appear also at the level of the field equa-
tions.

The Delta and Delta220 are simplistic ad-hoc unrealis-
tic modification schemes; in a realistic physical scenario,
we typically expect all or at least a subset of frequen-
cies and damping times to be modified and it is unlikely
that all modes are modified by the exact same amount.
We study them as they are simpler to implement and
to interpret the performance of BH spectroscopy and as
a benchmark. It also allows us to check if any of the
realistic spectra can be approximated as simpler ad-hoc
modifications.

For the EdGB, Kerr-Newman, and dCS spectra, we
opt to impose consistency with the Kerr BH spectrum by
linear rescaling, similar to the Horndeski case described
above. If we take the limit of ζEdGB → 0 for the EdGB
spectrum in [49], we do not recover the GR Kerr BH
QNMs (which would be the case if the EdGB QNMs
could be computed non-perturbatively) because the spec-
trum is derived at O(χ2

f ). Additionally, each spectrum is
derived within its own set of approximations, and there-
fore, they return a different approximation to the GR
Kerr BH spectrum in the limit of the vanishing deviation
parameters.

We provide a procedure for imposing consistency
across the spectra by redefining the spectra. We illus-
trate our procedure on EdGB below –

fEdGB
lmn (Mf , χf , ζEdGB)

= fKerr
lmn (Mf , χf )

(
f̂EdGB
lmn (Mf , χf , ζEdGB)

f̂EdGB
lmn (Mf , χf , 0)

)
(9)

We enforce the GR Kerr BH spectrum in the limit
ζEdGB → 0. Here, the hat denotes the expression of
EdGB spectrum presented in [49]. Then, we defined the
relative shifts as –

δflmn =
f̂EdGB
lmn (Mf , χf , ζEdGB)

f̂EdGB
lmn (Mf , χf , 0)

− 1 (10)

and parametrized

fEdGB
lmn = fKerr

lmn (1 + δflmn) . (11)

The definition (10) preserves the values of the shifts given
by the traditional parametrization of the spectrum. We
also repeat the same procedure for the damping times.
Here, we re-emphasis that this procedure is only neces-

sary because the QNM spectra in these modified theories
are calculated perturbatively to a limited order in the fi-
nal spin of the BH. In the absence of the exact spectra,
we use Eq. (11) as a fiducial definition for all the modified
spectra considered here.
Finally, in Fig. 1 we plot the relative deviations δflmn

and effective deviations δ̃flmn in the QNM frequencies
for the modified spectra listed above. We remind that it
is the effective deviations δ̃flmn that are measured when
performing BH spectroscopy. Interestingly, we find that
for some spectra even when the actual spectrum has de-
viations at a percent level, the measurable effective spec-
trum deviates from GR Kerr BH at a much smaller sub-
percent level. This is particularly evident for the Delta
spectrum where all the true frequencies are shifted by
the same amount but the measurable deviations turn
out to be much smaller. We also see this in the Kerr-
Newman spectrum. For each spectrum and mass ratio,
we quantify these differences in Tab. I. We present the
values of the deviation parameters α such that the devi-
ation in the dominant mode frequency is at 1% level i.e.,
|δf220| = 0.01. In Sec. V, using the values in Tab. I, we

study the ability of BH spectroscopy to constrain δ̃flmn

away from zero i.e., exclude the GR Kerr BH spectrum.

IV. METHODS AND IMPLEMENTATIONS

We construct ringdowns that comprise of (l,m, n) ∈
{(2, 2, 0), (3, 3, 0), (2, 1, 0)} modes with the modified
QNM spectra described in the previous Section 2. We
remind that the coupling parameters of the theory or
the extra charges that modify the QNM spectra are cho-
sen such that the dominant-mode frequency f220 differs
from the GR Kerr value fKerr

220 by 1%. This is a heuris-
tic choice but studying the effect of 1% deviation in f220
is a reasonable goal from the data analysis perspective
as the next-generation detectors is expected to measure
f220 with sub-percent accuracy [8, 12, 73]. For Delta and
Delta220 modifications, the sign of the deviation is cho-
sen to be positive i.e., fractional frequency shift of +0.01.
We fix the final mass Mf = 70M⊙ in the detector

frame. To compute ρRD, we consider events with ex-
trinsic parameters listed in Tab. II. These choices are

2 We do not consider overtones for simplicity as their measurablity
and physical interpretation is still debated even when assuming
that the underlying theory of gravity is GR [27, 30, 68–72].
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FIG. 1. Rows 1-4: Relative deviations δflmn (left) and relative effective deviations δ̃flmn (right) from the GR Kerr BH spectrum,
as induced by the different modified spectra discusses in Sec. III: EdGB, Kerr-Newman, Horndeski and dCS, respectively. Last
row: Relative effective deviations δ̃flmn induces by the Delta spectrum (left) and the Delta220 spectrum (right).
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Spectrum α0.01 M̃f (M⊙) χ̃f δ̃f330 δ̃f210
q = 1.4 , χf = 0.67

EdGB 0.28 71.10 0.68 −5.1× 10−3 9.7× 10−3

Kerr-Newman 0.25 69.71 0.68 −1.6× 10−5 6.6× 10−5

Horndeski 0.16 70.38 0.69 −4.3× 10−3 1.1× 10−2

dCS 0.055 71.40 0.68 9.7× 10−3 1.3× 10−2

Delta 0.01 69.76 0.68 4.2× 10−4 2.8× 10−3

Delta220 0.01 69.76 0.68 −9.5× 10−3 −7.1× 10−3

q = 3 , χf = 0.54
EdGB 0.31 70.54 0.54 −6.4× 10−3 4.8× 10−3

Kerr-Newman 0.26 69.75 0.55 −5.7× 10−5 4.5× 10−4

Horndeski 0.15 70.57 0.57 −4.3× 10−3 1.1× 10−2

dCS 0.058 72.30 0.54 1.0× 10−2 1.8× 10−2

Delta 0.01 69.82 0.55 3.6× 10−4 3.1× 10−3

Delta220 0.01 69.82 0.55 −9.5× 10−3 −6.8× 10−3

q = 5 , χf = 0.42
EdGB 0.34 70.01 0.40 −7.5× 10−3 5.2× 10−5

Kerr-Newman 0.27 69.77 0.43 −1.1× 10−4 8.2× 10−4

Horndeski 0.14 70.71 0.46 −4.3× 10−3 1.1× 10−2

dCS 0.063 76.26 0.55 1.2× 10−2 4.2× 10−2

Delta 0.01 69.08 0.51 1.9× 10−3 2.1× 10−2

Delta220 0.01 69.08 0.51 −5.7× 10−2 −4.0× 10−2

TABLE I. Values α0.01 of the deviation parameter α inducing a 1% shift in f220, alongside the effective measurable final mass
and spin {M̃f , χ̃f} as well as the effective shifts δ̃flmn in the frequencies of the subdominant modes, for the different spectra con-
sidered in this work. Here α is a collective name for the additional theory parameter. It represents {ζEdGB, Q, µ, ζdCS,∆,∆220}
depending on the spectrum.
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compatible with the GW150914 event, with the only ex-
ception of the inclination angle; the posteriors distribu-
tion for the inclination angle of GW150914 prefers a face-
on/face-off orientation for which the subdominant modes
excitation is suppressed significantly. Instead, we use a
more optimal inclination angle for BH spectroscopy and
set ι = π/3. For each modified QNM scenario, we study
mass ratio q ∈ {1.4, 3, 5}. The final spin of the remnat
and the mode excitation amplitudes Almn are computed
from the q using the numerical fits provided in [74] and
[28], respectively, by assuming non-spinning progenitors.
The absolute amplitude scale A220 is set by Eq. (5) in
[22]3. In particular, χf ≈ {0.67, 0.54, 0.52} for the three
values of q chosen here. The phases ϕlmn do not signif-
icantly affect the recovery of the QNM frequencies and
damping times (c.f., [30, 32]) and therefore for this study,
we set it to 0.

The ringdown waveform is modeled as h = h+ + ih×,
with

h+ =
∑

l,m>0,n

Almn −2Ylm,+ (ι)e−t/τlmn cosΦlmn , (12a)

h× =
∑

l,m>0,n

Almn −2Ylm,× (ι)e−t/τlmn sinΦlmn , (12b)

where Φlmn = 2πflmnt + ϕlmn, Almn and ϕlmn are the
(real) excitation amplitudes and phases of the modes,
and the plus and cross spherical harmonics are defined
by4

−2Ylm,+ (ι) = −2Ylm (ι, 0) + (−1)l−2Ylm (ι, 0) , (13a)

−2Ylm,+ (ι) = −2Ylm (ι, 0)− (−1)l−2Ylm (ι, 0) . (13b)

In writing the expression (12), we assume a
non-precessing quasi-circular binary progenitor. For
these systems equatorial reflection symmetries gives
Al−mne

iϕl−mn = (−1)lAlmne
−iϕlmn and we simultane-

ously sum over ±m using the symmetry relation ωl−mn =
−ω∗

lmn
5. We assume a circularly polarized ringdown as

the numerical simulations favour it (c.f., [25] for a de-
tails). We also use spherical harmonics instead of the
more natural spheroidal harmonics basis function for

3 Here we emphasize that depending on the modified theory, this
assumption may not hold to differing extents. Amplitudes are
governed dominantly by the plunge-merger dynamics and we typ-
ically need a fully numerical simulation to infer them. However,
we do not have numerical simulations for most of the theories
considered here; thus, we do not have knowledge of the ampli-
tudes of mode excitation in these theories. Instead, we use the
GR amplitudes as an approximate proxy for practicality.

4 A global phase in the definition of the spherical harmonics can be
reabsorbed in the definition of the phases ϕlmn of the ringdown
modes.

5 We use ωlmn to denote the prograde modes of the spectrum. The
QNM solutions also contain a set of retrograde modes, but in the
numerical simulations it is seen that these modes are not excited
significantly [24]. See also [69, 75] on the role of retrograde modes
in describing the ringdown waveform.

ringdown; this is a fairly standard approximation which
is known to introduces substantial errors only in high
spin limits [76, 77].

To predict the statistical uncertainty in the measure-
ment of δ̃flmn, we employ a Fisher matrix formalism
following our work in [8]. We use the power spectral
density (PSD) of the next-generation ground-based de-
tector – the Einstein Telescope, assuming a triangular
geometry, located in Sardinia [78] and operating at the
ET-D sensitivity [79]. However, note that all the quali-
tative statements and ball-park numbers reported in this
study should hold for any detector for a given ρRD. Our
study is not heavily influenced by the choice of the detec-
tor as long as the modifications in the spectra are cho-
sen to have 1% deviation of f220. Note that while the
results in this study will be approximately similar for
the next space-based detector LISA, LISA will be sen-
sitive to supermassive binary BH signals and therefore,
the theory-specific parameters i.e., coupling constants or
extra charges, that lead to 1% deviation of f220 will be
different from the choice made here. However, we expect
theory-parameters similar to the choice made here for the
Cosmic Explorer, as it is sensitive to stellar mass ranges
similar to the Einstein Telescope [11].

For computing the Fisher covariance matrix, we pa-
rameterize the waveform as Eq.s (6)-(7), i.e., using ef-

fective parameters {M̃f , χ̃f , δ̃flmn, δ̃τlmn} instead of the
traditionally used {flmn, τlmn}. Next, for a choice of the-
ory parameters that produces a modified spectra such
that f220 deviates by 1% w.r.t. GR Kerr BH, we map the
true values {Mf , χf} to the measured values {M̃f , χ̃f}
using Eq.s (2) and (8). Note that once we compute the

values of {M̃f , χ̃f}, deviation parameters for all the sub-
dominant modes get fixed. We construct the covariance
matrix for a set of 4N parameters, whereN is the number
of modes as –

θ = {M̃f , χ̃f , δ̃flmn, δ̃τlmn, log10 Almn, ϕlmn} . (14)

For the dominant mode, we estimate {M̃f , χ̃f}, and not

{δ̃f220, δ̃τ220}.
Next, we quantify the departure of the modified QNM

spectra from GR Kerr QNM spectra using QGR as a mea-
sure, where QGR is defined as the quantile at which the
posterior distribution of δ̃ excludes zero. Higher the value
of QGR, more confidently we can exclude the null hypoth-
esis that the ringdown contains QNMs corresponding to a
GR Kerr BH. QGR can either be defined mode-wise over
a marginalized 1-d probability distribution P (δ̃flmn) or
defined on a joint probability distribution of all the mea-
sured modes. Here, we use QGR defined on the 1-d pos-
terior distributions corresponding to – a) δ̃f330 : Q330

GR,

b) δ̃f210 : Q210
GR and c) on a joint posterior distribution

of δ̃f330 and δ̃f210 : Q2D
GR.

In the Fisher matrix formalism, by construction,
P (δ̃flmn) is a Gaussian distribution centered at the true

value of δ̃flmn. From this, Qlmn
GR can be easily computed
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ra dec ψ ι tGPS dL(Mpc)
1.16 −1.19 1.12 π/3 1126259462.423 403

TABLE II. Right ascension, declination, polarization an-
gle, inclination angle, GPS time and luminosity distance for
GW150914 that were used to compute the SNR and the Fisher
covariance matrix.

as

Qlmn
GR = erf

(
p/

√
2
)
, (15)

where the p-value is given as

p =
|δ̃flmn|

σ
. (16)

Further, Eq. (16) can be generalized to a 2-dimensional

case of the joint posterior P (δ̃f330, δ̃f210). In the cases of
2-D posteriors –

Q2D
GR = 1− exp

(
−1

2
µ⃗T ·Σ−1 · µ⃗

)
(17)

where µ⃗ is the vector corresponding to the true values of
{δ̃f330, δ̃f210} and Σ is the covariance matrix.

V. RESULTS

Before turning our attention to the modified spectra,
we first look at the measurability of a GR Kerr BH spec-
trum with the next generation ground-based detectors.
We used ET-D PSD to illustrate the expected orders of
magnitudes and trends. Specifically, we consider ring-
downs corresponding to q ∈ {1.4, 3, 5} with Mf = 70M⊙
and the extrinsic parameters displayed in Tab. II. Tab. III
shows ρRD and the expected measurement uncertainties
on the deviation parameters σ(δ̃flmn) — note that for a

GR Kerr BH spectrum, δ̃flmn = δflmn and we use tilde
here for consistency of notation. We report the normal-
ized uncertainties κ ≡ ρRDσ, where ρRD is the SNR in the
ringdown and σ is the expected statistical uncertainty in
the parameter computed with a Fisher information ma-
trix framework 6. Further, we confirm that the uncer-
tainty in the measurement of the deviations in damping
times σ(δ̃τlmn) is large; therefore, we concentrate on the
subdominant mode frequencies.

To appreciate the quantitative results, we begin with il-
lustrating the performance of BH spectroscopy for a) the
best-case scenario, the dCS spectrum, and b) the worst-
case scenario, the Kerr-Newman spectrum in Fig. 2. For

6 Note, the relative excitation amplitudes Almn/A220 of the sub-
dominant modes increase monotonically with q for non-spinning
systems [21–23, 25, 28]. However, ρRD decreases with q [22].
Therefore, while spectroscopy with high q is favourable for fixed
ρRD, it need not be the case for fixed luminosity distance.

q ρRD κ = ρRD σ

M̃f (M⊙) χ̃f δ̃f330 δ̃f210 δ̃τ220 δ̃τ330

1.4 87 184.63 3.68 1.56 7.78 22.43 46.14
3 74 294.63 7.43 1.00 3.27 9.17 19.73
5 57 436.37 13.08 1.27 3.38 8.80 22.26

TABLE III. ρRD and uncertainties σ over mass, spin and the
deviations parameters for a Kerr BH spectrum, as measured
by a triangular configuration of ET detector with ET-D PSD.
The ringdown corresponds to a BH whose detector-frame final
mass is Mf = 70M⊙ and the extrinsic system parameters are
enlisted in Tab. II.
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FIG. 2. Projection of BH spectroscopy on the mass-spin plane
for the Kerr-Newman (top) and dCS (bottom) spectra. We
set ρRD = 300 and q = 5. The bands correspond to the 90%
credible intervals. The black and red markers indicate the
measurable and true values for mass and spin, respectively.

both cases, we use ringdowns with ρRD = 300 and q = 5.
Specifically, we show the projections of the 90% credi-
bility bands of f220, τ220, f330 and f210 on the mass-spin
plane. The common region of intersection of f220 and τ220
corresponds to the measurable mass and spin {M̃f , χ̃f}
estimate (indicated by a black marker), while the true
value of {Mf , χf} (indicated by a red marker) lies outside
the intersection region. For the Kerr-Newman spectrum,
all bands have a common intersection region, and there-
fore, BH spectroscopy fails to detect deviations from the
GR BH Kerr QNMs. On the contrary, for the dCS spec-
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trum, there is no common intersection region and BH
spectroscopy can be used to identify that this spectrum
is incompatible with GR at the 90% confidence level.

Next, looking at the values of {M̃f , χ̃f} and of δ̃flmn

in Tab. I, we observe that {M̃f , χ̃f} does not differs sig-

nificantly from {Mf , χf} and δ̃flmn ≪ 1. Consequently,
the results reported in Tab. III for the GR Kerr BH spec-
tra can be expected to approximately hold for the mod-
ified QNM spectra too. This allows to derive a back-of-
the-envelope ρRD estimate required to distinguish vari-
ous modified spectra from the GR Kerr BH spectrum.
Further, we can use Eq.s (15)-(16) to find the ρRD nec-

essary to exclude 0 from P (δ̃f330) at 90% confidence.For
instance, in the case of an EdGB spectrum, from (15) we
observe that Qlmn

GR = 0.9 corresponds to p ≈ 1.64. Invert-
ing (16) for ρRD = κ/σ and using the results in Tab.s I
and III, we get an approximate minimum value of ρRD

as –

ρ0.9RD ≈


502 (q = 1.4)

256 (q = 3)

278 (q = 5)

(18)

If we repeat this exercise for the dCS spectrum, we find

ρ0.9RD ≈


264 (q = 1.4)

164 (q = 3)

174 (q = 5)

(19)

Note that it is only for the sake of demonstrating a fast
and easy approximate estimation that we derive (18) us-
ing the values in Tab. III, which assumed a GR Kerr BH
spectrum. However, there is no fundamental obstruction
to being fully consistent by applying Eq.s (15) and (17)
using the covariance matrices from the modified spectra.

In Fig. 3, we depict marginalized 2-d posterior esti-
mates of δ̃f330 and δ̃f210 for all the modified ringdowns
studied. Here again, we use ringdowns with ρRD = 300
to illustrate QGR as a measure to distinguish a modified
QNM spectrum from the GR Kerr BH spectrum. When
the posterior distributions are compatible with (0, 0) (in-
dicated with a black dot), the QNM spectra for the f330
and f210 are compatible with the GR Kerr BH spectrum.
Note also that the shape of the contours changes with q
(and that the contours do not trivially shrink with chang-
ing in q). This foreshadows the non-trivial dependence
of QGR on q which will be further emphasised in fig 4.
We can identify the modifications to various level of con-
fidence – Q2D

GR = {0.33, 0.85, 0.97} for Horndeski, Q2D
GR =

{0.39, 0.91, 0.96} for EdGB, Q2D
GR = {0.85, 0.99, 1} for

dCS for q = {1.4, 3, 5} respectively. We can contrast
this to the case of Kerr-Newman where we do not expect
to detect any deviations – we have Q2D

GR = O(10−6) for
q = 1.4, O(10−3) for q = 3 and O(10−2) for q = 5. We
will see in Fig. 4 that this is true even at very high ρRD.

Finally, in Fig. 4, we present our main results on ρRD

required to identify deviations from the GR Kerr QNM
spectrum for the various modification schemes. The first

two columns show QGR computed using a 1-d posterior
distribution of f330 and f210, respectively, and the right-
most column corresponds to the 2-d joint posterior distri-
bution on f330 and f210. Again, we study systems corre-
sponding to three mass ratios: in the first row, we study
the near-equal-mass scenario of q = 1.4; in the second
row, we study q = 3 and in the last row, we study q = 5.

Let us examine the ρRD at which QGR ≥ 0.9 for all
the modified QNMs considered here. We observe that
ρRD required to distinguish the modified QNMs from GR
Kerr BH spectrum depends acutely on the details of the
modifications. Modification of the spectra, such as that
predicted by Kerr-Newman and Delta, cannot be confi-
dently differentiated from the GR spectrum, even when
ρRD = 103. This happens because these modifications
can be approximated by the GR by suitably selecting
the values of M̃f and χ̃f . In other words, these modi-
fied spectra are highly degenerate with the GR Kerr BH
QNM in the mass-spin space. This can be quantitatively
seen in Fig. 1. For instance, δ̃flmn for these modified
spectra is an order of magnitude smaller than δ̃flmn for
other modifications such as dCS or EdGB. In contrast to
this, modifications predicted by the EdGB and Horndeski
theories can be distinguished confidently from the GR at
a ρRD ∈ [250, 103]. Furthermore, the dCS or Delta220-
like QNM spectra could be confidently identified with an
even lower ρRD ∈ [250, 400].

We highlight two non-trivial trends from Fig. 4 that
we observe.

• While all of them are valid measures to identify
modifications in a QNM spectrum, we find that the
ability to distinguish a modified theory from GR
using 1-d Q330

GR, Q
210
GR and 2-d joint Q2D

GR are fairly
different and depends on theory. While modifica-
tions in the spectra predicted by dCS and Delta220
benefit by using Q330

GR, Kerr-Newmann and Delta
are more distinguishable using Q210

GR. Furthermore,
certain types of modifications will only manifest in
a detectable fashion in one of the QGR measures.
For example, EdGB spectra with ρRD ≤ 103 cannot
be confidently distinguished if we used Q210

GR while
it can be using Q330

GR or Q2D
GR.

• The distinguishability of a given modified spectrum
does not have a monotonic behaviour with q. This
occurs because q dictates both the mode excita-
tion amplitudes and the final spin of the remnant
BH, and the interplay between the two produces
the non-monotonic trend we see here. For instance,
at a given ρRD, Q

330
GR for dCS increases monotoni-

cally with q, while Q330
GR for EdGB and Horndeski

spectra seem to perform better for the case of q = 3
than for q = 1.4 or 5. It is also worth noting that
the performance of Q330

GR, Q
210
GR and Q2D

GR for differ-
ent theory can differ with q.
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FIG. 3. Density plots of {δ̃f330, δ̃f210} for the modified spectra considered in Sec. III and different mass ratios. Solid and dashed
lines indicate the 90% and 50% probability contours respectively. We assume a true injected mass Mf = 70M⊙ and vanishing
initial spins (see Tab. I for the values of the corresponding effective measurable masses and spins). We set to ρRD = 300
to clearly display the different trends of the spectra in distinguishing deviations from GR. The null hypothesis under test is
denoted by a black marker.
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FIG. 4. Values of the GR quantile QGR as a function of the ρRD. We consider quantiles for the marginalised single parameter
posteriors P (δ̃f330) (leftmost column) and P (δ̃f210) (central column) and for the 2D joint posterior P (δ̃f330, δ̃f210) (rightmost
column). The quantiles are computed using the exact expressions (15) and (17).
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VI. DISCUSSION AND CONCLUSION

We performed a comprehensive study on the ability of
BH spectroscopy to distinguish a modified spectra from a
GR Kerr BH QNMs. We studied theory-motivated mod-
ifications for QNM spectra that were publicly available
– specifically, EdGB, Kerr-Newman, Horndeski and dCS
theory, and for two phenomenologically modified QNM
spectra – Delta and Delta220. To investigate ρRD nec-
essary to distinguish these modified spectra from a GR
Kerr BH spectrum, we assessed the performance of BH
spectroscopy using a Fisher information matrix formal-
ism. The ringdowns with the modified spectra are gen-
erated such that in each case f220 deviates from the cor-
responding GR Kerr QNM by 1%.

First, we re-iterate that we can only measure the effec-
tive deviation parameters δ̃flmn and not the absolute de-
viation δflmn as the mass and the spin estimation can be
chosen suitably to compensate for the deviations of the
QNMs. Further, we show that in many theories δ̃flmn

significantly differs from δflmn. Therefore, to study the
ability BH spectroscopy to distinguish modified spectra,
the framework must be setup using the measurable effec-
tive deviation parameters δ̃flmn .

We found that ρRD necessary to distinguish a mod-
ified spectrum from the GR Kerr one depends on the
details of the modification and on the mass ratio. Fur-
ther, we used three different measures that quantify the
amount by which: a) the 1-d posterior estimate of δ̃f330
excludes 0 a.k.a. Q330

GR, b) the 1-d posterior estimate of

δ̃f210 excludes 0 a.k.a. Q210
GR and c) the 2-d joint posterior

estimation of δ̃f330− δ̃f210 excludes (0,0) a.k.a. Q
2D
GR. De-

pending on the spectrum and the magnitudes of δ̃flmn,
the performance of Q330

GR, Q
210
GR and Q2D

GR can vary signif-
icantly. Roughly, we find that a ρRD ≥ 150 is required
to identify deviations from GR at a 90% credibility level.
This range of ρRD is attainable with the next generation
detectors and BH spectroscopy will be a powerful tool to
constrain GR as well as for identifying modifications to
Kerr BH spectrum.

In previous works [8, 9], we studied the measurability
of QNM parameters, that is, the statistical uncertainty
with which a QNM mode parameter can be estimated
from a signal to assess the landscape of BH spectroscopy
with a next-generation detector. However, we note here
that the subdominant QNM mode with the best mea-
surability may not always be the optimal mode for dis-
tinguishing a modified QNM spectrum from a GR Kerr
BH QNM spectrum. The best mode to identify a depar-
ture from GR Kerr spectrum depends on the interplay
between measurablity and the details of modification of
the spectra. For instance, measurablity of f330 is better

than f210 in a non-spinning binary BH ringdown. How-
ever, if the compact object is a Kerr-Newman BH instead
of a Kerr BH, f330 measured in the ringdown would be
compatible with the Kerr BH even for ringdown with
ρRD ∼ 103. The modifications in the spectra in this
case can be observed predominantly by looking at f210.
Therefore, using a setup that uses information in all mea-
surable QNM mode parameters is optimal while looking
for departure from the GR Kerr spectrum in a ringdown
signal. Greater the number of QNM mode parameters
measured, greater the chances that we can distinguish a
modified QNM spectra from the GR Kerr spectra.
Furthermore, among the modified QNM spectra we

have studied, we see the theories separate out into two
groups :

• EdGB, Horndeski, dCS, Delta220: For these spec-
tra, a GR Kerr ringdown can be excluded at 90%
confidence level with a SNR ρ0.9RD ∈ [150, 500].
The deviations manifest more prominently in the
(3, 3, 0) mode and the (2, 1, 0) mode offers a rela-
tively poor constraints.

• Kerr-Newman, Delta: here the deviations manifest
almost exclusively in the (2, 1, 0) mode, with Q210

GR
returning the most performative no-hair test. How-
ever, the ρRD required to exclude 0 at 90% confi-
dence is so high that these deviations are indistin-
guishable, even at ρRD = 1000.

Finally, works such as this is essential for gauging the
potential of ringdown-based tests of gravity; but unfor-
tunately, we are restricted by publicly available modified
QMN spectra. While it is difficult to solve the QNM spec-
tra in modified theories of gravity, to adequately prepare
for test of GR with next-generation detectors including
designing the implementation of BH spectroscopy, we feel
that the field would benefit substantially from investing
effort in this direction.
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