

Overview of the ET design and next steps on the ET roadmap **Michele Punturo INFN** Perugia ET-0008A-17

ET Glasgow 2017

Short history of the 3G and ET idea

- 2004: ILIAS the Virgo and GEO communities participate to a I3 project funded in FP6 together to the underground lab laboratories
 - A fraction of a networking activity (N5-WP3), chaired by H. Lueck and M. Punturo, is devoted to the future "research infrastructures" for GW
 - First idea for a Design study, submitted but failed because of an unclear vision
- 2005: ESF funded an Exploratory workshop in Perugia titled "Toward 3G GW detectors"
 - We focused the concept of a 3G observatory and we agreed how to submit a proposal
- 2007: we submitted to EC a successful proposal for the conceptual design study a 3G observatory: Einstein Telescope

... Short history of the 3G and ET idea

- 2008-2011 ET design study realisation (funded by European Commission)
- 2011 ET Conceptual Design Report delivering
- 2012-2016:
 - Minor support from institutions (ASPERA R&D, national funds, ...) waiting for detection

The present

- The GW detection(s) stimulated new activities on 3G
- Funding agencies are (too) slowly and progressively (and hopefully) understanding the importance of giving a future of this sector
- Activities are restarted/started among two directions:
 - Bottom-up
 - Top-down

Bottom-up activities

- Three initiatives in Europe, approximately related to the site investigations performed during the ET Design Study phase
 - ET in Hungary
 - Site identified, small underground lab realised, accurate seismic measurement performed and progressing
 - National academia support
 - ET in The Netherlands
 - Site identified, accurate seismic studies funded and ongoing
 - Strong political support at local and national level
 - Some level of involvement of Germany and Belgium
 - ET in Italy/Sardinia
 - Site identified, Seismic measurements performed in a pre-existing infrastructure
 - Underground laboratory recently funded by the regional government, strong interest of the local academia

Top-down

• Two main top-down actions relative to 3G:

- GWIC 3G committee
 - Scientist initiative
 - Regular meetings every 15 days
 - Global vision:
 - Science case for a global 3G network
 - Definition of the common enabling technologies
 - Coordination of R&D activities
 - Preparation of the governance of a future network of GW
- GWAC
 - Funding agencies initiative coordinated by NSF
 - Meetings every O(year)

The future

- To have ET operative in the first years of 2030 decade
- Is it too early or too late?
 - GW detector realisation requires a long process (~15 years between CDR and first operations)

			LIGO	Virgo	AdV	aLIGO
1985			Design of a multikm IFO 1983	R&D		
1990		10	NSF approval	White Paper, CDR (1989)		
1995	ycars	Vears	Site construction	R&D Approval (1994) Final Design, TDR (1995) Beginning Infrastructure (1996))	R&D
2000			years		R&D	CDR (1999)
			First coincidence	Completion installation Detector (2003)	First AdV sensitivity projection (2004	R&D
2005			Nominal Sensitivity (2006)	Scientific data taking (2007)	AdV White Paper, CDR (2 Approval (2009)	Building (2008)
2010				Decommissioning (2 13	First orders (2010) TDR (2012)	Installing completion
2015				ars	Completion Installation (201) First data taking (2017)	(2014)
				LVC Sept 2017		8

ET time?

Large Hadron Collider

 FCC (Future Circular Collider) discussed during LIGO/Virgo-CERN meeting

- 80-100km long tunnel close to LHC
- Expected Excavation time 7 years
- ET excavation cannot be too shorter

Future Circular Collider

Why we are here?

• Global effort (GWIC):

- Scientific potential of a 3G network justifying the investment
- A panorama of the enabling technologies and a coordinated R&D effort at the global level
- Agreed and shared roadmap toward 3G

• ET specific effort:

- A preliminary version of the ET TDR to be submitted to the appropriate roadmapping organisations, possibly either integrated or in parallel with Cosmic Explorer
 - ESFRI in Europe (2019)
 - Decadal survey in USA?

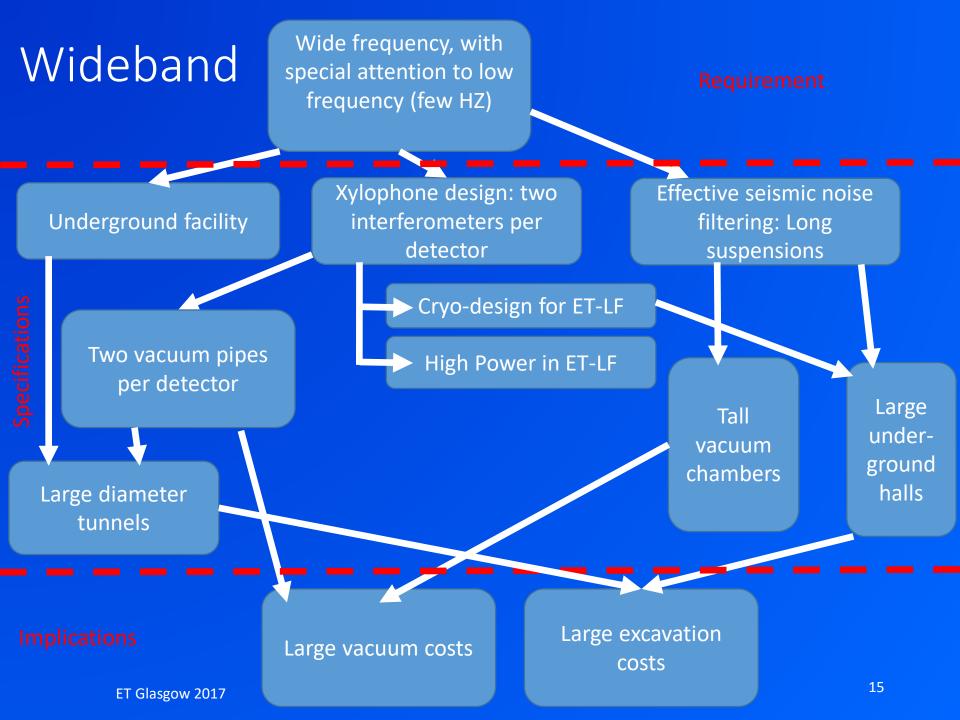
Next steps

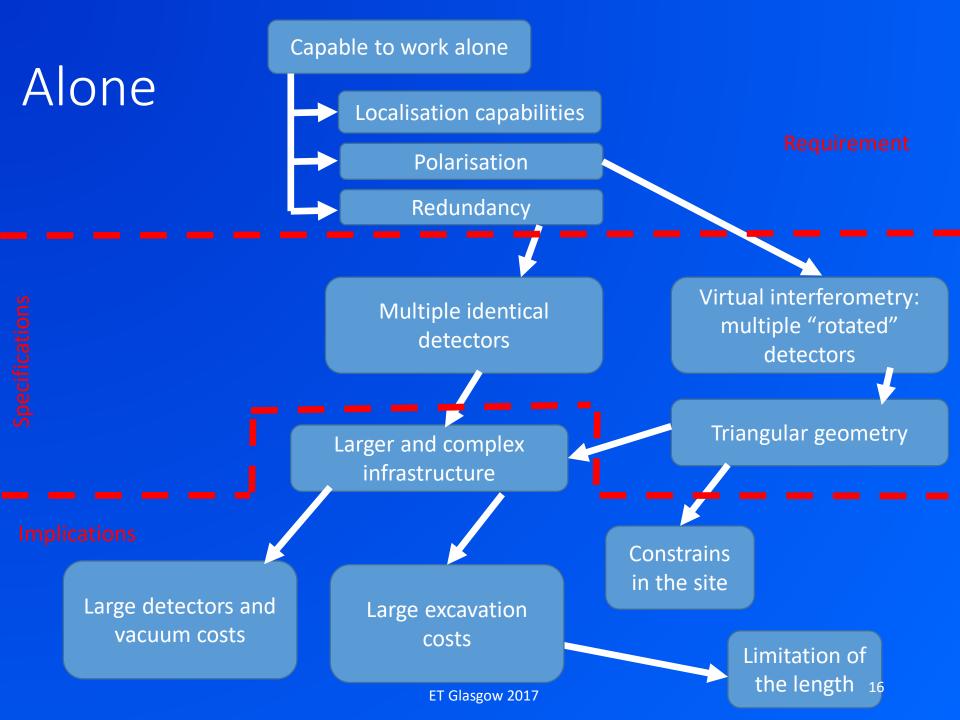
- Next steps in 3G evolution needs still to be defined also thanks/within the 3G GWIC sub-committee
- My personal vision:
 - End 2018:
 - 3G network science case
 - Revised ET CDR with TDR elements
 - Better cost estimation
 - General agreement in GWIC+GWAC/APPEC on the strategy to be pursued
 - 2019: submission of the ET project to the ESFRI roadmap with:
 - A very short ET site candidate list* and a global strategy where ET is the (first) observatory of the network
 - 2022: Site selected, funding strategy defined
 - 2025: Begin of the excavation works

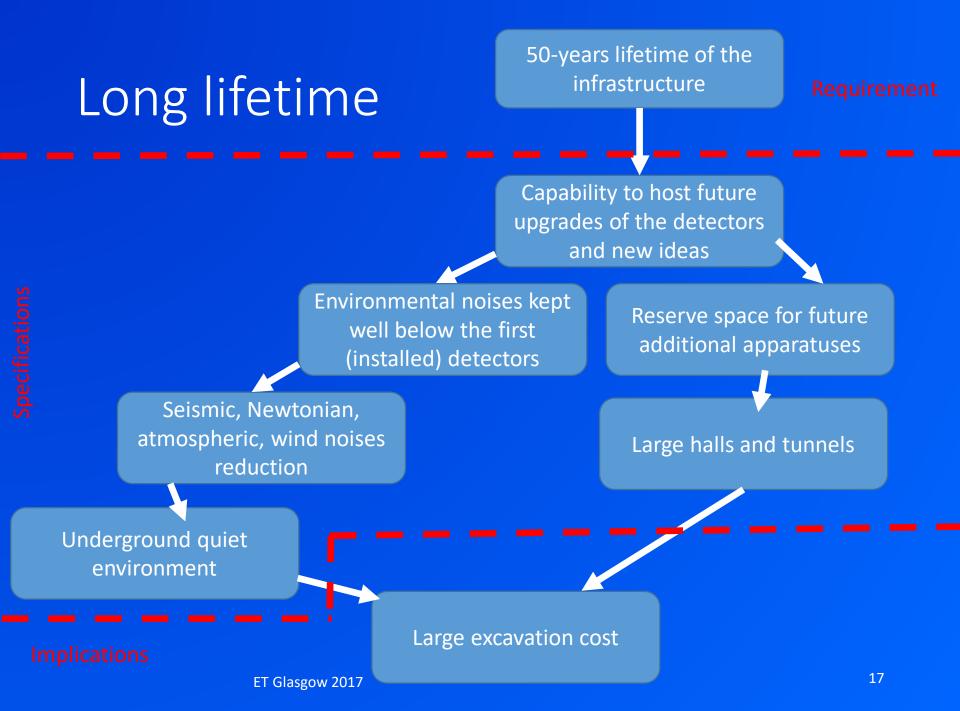
*ET sites list (still personal view)

- ET MUST be a pan-European initiative, possibly inserted in a global strategy
 - If we repeat the errors of the past in GW research (separation of the Virgo and GEO efforts), we will repeat also the same difficulties
- We should present to ESFRI a very short list of sites (1-3) with a clear list of countries supporting these candidates and a defined decision mechanism and timing. The role of each country obviously will change according to the selected site, but there should not be renunciations.

Discussion points


- If we agree that we are here to initiate a path of update of the CDR in order to have a (draft and partial) TDR hopefully at the end of 2018, we should identify what are the elements to be discussed
- In the following slides I try to give my (partial) view of the points that need urgently a review
- Let start from the infrastructure


The 3G idea of ET



• To realise a **3G** new GW observatory

- 3G: Factor 10 better than advanced (2G) detectors
- New:
 - We need a new infrastructures because
 - Current infrastructures will limit the sensitivity of future upgrades
 - In 2030 current infrastructures will be obsolete
- Observatory:
 - Wide frequency, with special attention to low frequency (few HZ)
 - Stellar mass Black Holes
 - Capable to work alone
 - Localization capability
 - Polarisations
 - High duty cycle: redundancy
 - 50-years lifetime of the infrastructure
 - Capable to host the upgrades of the hosted detectors

Questions

- Is it possible to mitigate the "implications", preserving the requirements?
 - We need new ideas/solutions
 - For example, is Xylophone design still "a must"?
- Are the requirements still valid?
 - 3G network makes ET pointing capabilities not necessary
 - Stability of the current AdV detectors, multi-observatory strategy make redundancy not mandatory
- To measure polarisations is a key component:
 - How much it must be concentrated in a single observatory is related to the global network composition and to the level of integration of the 3G project
 - Preserving it could be a risk reduction element

Few elements of discussion on ET technologies

(partial and incomplete view)

Low Frequency (1)

- ET-LF design of the seismic filtering system is based on the Virgo SA experience
 - Quite successful in terms of performances
 - Long lasting experience on this solution (with some issue, like blade fragility)
- But a 17m tall tower impacts on the requirements of the experimental halls and vacuum chambers
 - We should compare LIGO experience in terms of "compactness"

Low Frequency (2)

Newtonian noise subtraction

- In the ET Design Study, sensitivity curve has been computed without using Newtonian Noise subtraction
- CE more recently introduced a factor 10 subtraction
- What is achievable under ground?

Is it worth to update the ET-D sensitivity curve?

Low frequency (3)

• Cryogenic payload:

- Where we are about suspension material and design?
- Silicon suspension wires technology is still an option?
- What we learn from Sapphire suspensions in KAGRA?
- Is 10K operating temperature still the solution?
- What we lose/gain going to 110K adopting Voyager design?

Test masses

- What is the current understanding of the thermal noise and absorption quality of the Silicon test masses?
- What is effective geometry we can purchase?
- What happens if we update the specifications in the design study?

Coatings

- How much are we progressed in understanding the coatings at low temperature with respect to the ET design study?
 - New ideas on coatings (nano-layers, crystalline, ...)

Optical Design

- The design based on Michelson interferometers with Fabry-Perot cavities demonstrated its validity
- Do we have solid reasons to believe that the evolution of this design will encounter a show stopper?
 - Do we need a revolution?
 - What is the eventual impact on the infrastructure?
 - What is the impact of the required squeezing technologies (filter cavities, ...)?
 - Are LG higher modes still a possible technology?

High frequency

- Are 3MWatt still realistic in the ET-HF cavities?
- Should ET-HF be underground?
 - Could we have two different locations for ET-HF and ET-LF?
- What is the technology for ET HP laser?

Conclusions

- This is the first ET design update workshop:
 - No conclusions are available
- My hope is to arrive, at the end of this week, with a series of teams that identify a set of urgent updates of the ET design study and will work on it in the next months
- Currently we have no financial support, but contacts with the funding agencies are in progress to improve the situation.