

The ET sensitivity curve with 'conventional' techniques

Stefan Hild and Andreas Freise

University of Birmingham

1st ET General meeting, Pisa, November 2008

Overview

How close can we get to the ET target sensitivity conventional methods?

Arm power: 3043.13 kW Power on beam splitter: 10765.08 W Thermal load on ITM: 1.675 W Thermal load on BS: 0.308 W Reqired TCS efficiency: 1.000(estima BNS Inspiral Range: 2531.10 Mpc BBH Inspiral Range: 7.45e.12

Developed a GWINC (former Bench) model for ET.

How much would we have to boost conventional technology?

What can we learn from this toyanalysis?

The Context of this analysis

- How close can we get to ET target sensitivity employing only available (conventional) techniques?
- Educational exercise: Push conventional techniques to - or maybe beyond - their limits.
- Our method: Start from a 2nd Generation detector. Then make step-by-step modifications to reach ET target.

((O)) EGO

III EGO

Definition of *conventional* and *non-conventional* techniques

Conventional:

- Successfully demonstrated on table-tops and prototypes:
 - Squeezed light
 - Cryogenic optics
 - ...
- Up-scaling of current technology without major change in involved physics:
 - 30m long suspensions
 - 200kg test masses

• ...

The starting point

- We consider:
 - Michelson topology with dual recycling.
 - One detector covering the full frequency band
 - A single detector (no network)
- Start from a 2nd Generation instrument.
- Each fundamental noise at least for some frequencies above the ET target.

=> OUR TASK: All fundamental noises have to be improved !! 2nd Generation design sensitivity

III EGO

Step 1: Increasing the arm length

DRIVER: All displacement noises ACTION: Increase arm length from 3km to 10km EFFECT: Decrease all displacement noises by a factor 3.3 SIDE EFFECTS: Decrease in residual gas pressure - Change of effective Signal recycling tuning

III EGO

Optimising the signal recycling detuning

- Detuned SR is used in Advanced Virgo and Advanced LIGO
- For ET tuned SR seems to be more promising:
 - Optimal trade-off between peak sensitivity and bandwidth
 - Recycle both signal sidebands.

Optimising the signal recycling transmittance

Optimal trade-off between peak sensitivity and bandwidth for 10% transmittance.

UNIVERSITY OF BIRMINGHAM

((O)) EGO

Quantum noise

Gravity Gradients

Advanced Detector

Suspension thermal noise

Coating Thermo-optic noise

10⁴

Coating Brownian noise

Substrate Brownian noise

Seismic noise

Excess Gas

Total noise

ET target

ET dummy curve, file=ET sthild 3.m

10²

Frequency [Hz]

10¹

10

Step 2: Optimising signal recycling

DRIVER: Quantum noise

ACTION: From detuned SR to tuned SR (with 10% transmittance)

EFFECTS: Reduced shot noise by ~ factor 7 at high freqs

- Reduced radiation pressure by ~ factor 2 at low freqs
- Reduced peak sensitivity by ~ factor sqrt(2) :(

10³

III EGO

Step 3: Increasing the laser power

DRIVER: Shot noise at high frequenciesACTION: Increase laser power (@ ifo input) from 125W to 500WEFFECT: Reduced shot noise by a factor of 2SIDE EFFECTS: Increased radiation pressure noise by a factor 2

III EGO

Step 4: Quantum noise suppression

DRIVER: Shot noise at high frequencies

ACTION: Introduced 10dB of squeezing (frequency depend angle)

EFFECT: Decreases the shot noise by a factor 3

SIDE EFFECTS: Decreases radiation pressure noise by a factor 3

III EGO

Increasing the beam size to reduce Coating Brownian noise

Increasing the beam size at the mirrors reduces the contribution of Coating Brownian.

Coating Brownian noise of one mirror:

$$S_x(f) = \frac{4k_{\rm B}T}{\pi^2 f Y} \frac{d}{r_0^2} \left(\frac{Y'}{Y} \phi_{||} + \frac{Y}{Y'} \phi_{\perp} \right)$$

beam radius on mirror

Please note: a beam radius of 12cm requires mirrors of 60 to 70cm diameter

III EGO

Step 5: Increasing the beam size

DRIVER: Coating Brownian noise

ACTION: Increase of beam radius from 6 to 12cm

EFFECT: Decrease of Coating Brownian by a factor 2

SIDE EFFECTS:

- Decrease of Substrate Brownian noise (~factor 2)
- Decrease of Thermo-optic noise (~factor 2)
- Decrease of residual gas pressure noise (~10-20%)

III EGO

Step 6: Cooling the test masses

DRIVER: Coating Brownian noise ACTION: Reduce the test mass temperature from 290K to 20K EFFECT: Decrease Brownian by ~ factor of 4 SIDE EFFECTS: Decrease of substrate Brownian Decrease of thermo-optic noise

Stefan Hild

LIGO-G080060

III EGO

Step 7: Longer Suspensions

DRIVER: Seismic noise

ACTION: Build 50m tall 5 stage suspension (corner freq = 0.158 Hz)

EFFECT: Decrease seismic noise by many orders of magnitude or pushes the seismic wall from 10 Hz to about 1.5 Hz

((O)) EGO

ARDUA ALTA

Tackling Gravity Gradient noise: going underground

Surface (Cascina)

about $1 \cdot 10^{-7} \,\mathrm{m}/f^2$ for $f > 1 \,\mathrm{Hz}$

Figure 7. Low seismic noise environment at the Kamioka site. Displacement noises at Kamioka, TAMA site, Tokyo, Black Forest Geophysical Observatory (Germany) and a low noise model (a hybrid spectrum of quiet sites in the world) are described.

Underground (Kamioka)

about $5 \cdot 10^{-9} \,\mathrm{m}/f^2$ for $f > 1 \,\mathrm{Hz}$

III EGO

Step 8: Going underground

DRIVER: Gravity gradient noise

ACTION: Go from the surface to underground location

EFFECT: Decrease gravity gradients by a factor 20

SIDE EFFECTS: Decrease in seismic noise by a factor 20

III EGO

Step 10: Heavier mirrors

DRIVER: Quantum noise at low frequencies ACTION: Increase test mass weight from 42 kg to 120 kg EFFECT: Decrease of radiation pressure noise

((O)) EGO

	advanced detector	potential ET design
Arm length	3 km	10 km
SR-phase	detuned (0.15)	tuned (0.0)
SR transmittance	11 %	10 %
Input power (after IMC)	$125\mathrm{W}$	$500\mathrm{W}$
Arm power	$0.75\mathrm{MW}$	$3\mathrm{MW}$
Quantum noise suppression	none	$10\mathrm{dB}$
Beam radius	$6\mathrm{cm}$	$12\mathrm{cm}$
Temperature	290 K	$20\mathrm{K}$
Suspension	Superattenuator	5 stages of each 10 m length
Seismic	$1 \cdot 10^{-7} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Cascina)	$5 \cdot 10^{-9} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Kamioka)
Gravity gradient reduction	none	factor 50 required (cave shaping)
Mirror masses	$42\mathrm{kg}$	$120 \mathrm{kg}$
BNS range	$150\mathrm{Mpc}$	$2650\mathrm{Mpc}$
BBH range	$800{ m Mpc}$	$17700{ m Mpc}$

Our analysis can be seen as the ...

What can we learn from our analysis?

- > The brute-force approach we presented:
 - It is just one of many approaches (values are mostly arbitrary chosen)
 - Not a very brave or innovative approach
 - Definetly high costs...
 - ..., but in principle possible. :)
- > Approaches also using non-convential techniques:
 - Definitely more elegant
 - Probably smaller costs
- Our brute-force approach can be used as reference scenario, allowing cost-benefit comparisons for evaluating 'new' (nonconventional) techniques.
 - Example: Using LG33 modes needs larger mirrors, but allows to operate ET at room temperature. Costs for larger mirrors = xxx. Cost for cryogenic test masses = yyy.

Summary

Using only conventional techniques it is possible to get close to the ET target sensitivity.

	advanced detector	potential ET design
Arm length	3 km	10 km
SR-phase	detuned (0.15)	tuned (0.0)
SR transmittance	11 %	10%
Input power (after IMC)	$125\mathrm{W}$	$500\mathrm{W}$
Arm power	$0.75\mathrm{MW}$	3 MW
Quantum noise suppression	none	$10\mathrm{dB}$
Beam radius	$6\mathrm{cm}$	$12\mathrm{cm}$
Temperature	290 K	$20\mathrm{K}$
Suspension	Superattenuator	5 stages of each 10 m length
Seismic	$1 \cdot 10^{-7} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Cascina)	$5 \cdot 10^{-9} \mathrm{m}/f^2$ for $f > 1 \mathrm{Hz}$ (Kamioka)
Gravity gradient reduction	none	factor 50 required (cave shaping)
Mirror masses	$42\mathrm{kg}$	$120\mathrm{kg}$
BNS range	$150\mathrm{Mpc}$	$2650{ m Mpc}$
BBH range	$800{ m Mpc}$	$17700{ m Mpc}$

- We developed a GWINC model for such an ET detector. This model can be used as reference for evaluation of benefit of more elegant / innovative approaches.
- More details can be found in:
 - S. Hild et al, http://arxiv.org/abs/0810.0604

((O)) EGO

END