R&D activity at LMA

<u>M. Granata</u>, L. Balzarini, G. Cagnoli, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, C. Michel, R. Pedurand, L. Pinard, J. Teillon

in collaboration with E. Cesarini, M. Lorenzini Università degli Studi di Roma Tor Vergata INFN Tor Vergata Gran Sasso Science Institute

D. Heinert, R. Nawrodt Friedrich-Schiller-Universität Jena

F. martelli, F. Piergiovanni Università degli Studi di Urbino Carlo Bo

L. Bellon, M. Geitner Ecole Normale Supérieure de Lyon

E. Coillet, C. Martinet, V. Martinez, J. Margueritat, A. Mermet Institut Lumière Matière

6th ET symposium – November 20th 2014, Lyon

outline

substrates

thermo-elastic damping of disks

amorphous coatings

- Granata & al., Granat direct measurement of thermal noise
- structure and mechanical loss

coatings used in these studies are not the same as those of detector test masses

- different ion-beam-sputtering machines
- different deposition parameters

thermo-elastic damping of disks

patterns

patterns

mode families

evidences

- GeNS
- high repeatability $\Delta f/f \sim 10^{-4}$ $\Delta Q/Q < 5\%$

• very low excess loss \leftrightarrow at low temperature: Q_{0,2} = 2.2 x10⁸ Q_{1,4} = 8.3 x10⁷ Q_{2,2} = 1.1 x10⁸

evidences

GeNS

high repeatability
Δf/f ~ 10⁻⁴
ΔQ/Q < 5%

- very low excess loss \leftrightarrow at low temperature: Q_{0,2} = 2.2 x10⁸ Q_{1,4} = 8.3 x10⁷ Q_{2,2} = 1.1 x10⁸
- independent simulations ANSYS + analytical COMSOL

modes and loss confirmed

 \rightarrow mode families are for real

isotropic sample

- d = 3", t = 0.8 mm, alpha-brass (Cu 64%, Zn 36%)
- simulations predict mode families
- preliminary measurements confirm expectations

theory

correction of Zener's equation

• energy-based approach

 $\phi_{TE}^{(Z)} = \frac{Y\alpha^2 T_0}{\rho C} \frac{\omega\tau}{1 + (\omega\tau)^2}$

 \rightarrow introducing R = dilation energy/total energy

6th ET symposium – Lyon, November 20th 2014

direct measurement of coating thermal noise

technique

SiO2 and Ta2O5

new mono-layer samples

better substrate measurements \rightarrow improved coating loss estimations

measured dilution factor $D \approx 1 - (fs/fcc)^2 \mu s/(\mu s + \mu c)$

• SiO2

as deposited: $\Phi c = 6.0 \pm 0.8 \text{ e-4} \rightarrow \Phi c = 5.9 \pm 0.3 \text{ e-4}$ annealed: $\Phi c = 6.2 \pm 4.3 \text{ e-5} \rightarrow \Phi c = 3.1 \pm 0.8 \text{ e-5}$

stacks

• quarter-wavelength coatings plain Ta2O5 and SiO2 layers

straight coated cantilevers –
technique developed at LMA

coated

results

coating structure and mechanical loss

Raman in a nutshell

laser $\mathbf{E} = \mathbf{E}_0 \cos(2\pi f_0 t) \rightarrow \text{dipole}$ polarizability & normal coordinates

 \rightarrow spectrum of vibrational transitions

talk by V. Martinez in this session **p** = a **E**

 $a(Qk) \sim a0 + Qk \partial a/\partial Qk$ $Qk = Qk0 \cos(2\pi fk t)$

P. Vandenabeele Practical Raman Spectroscopy Wiley, 2013

SiO2

in agreement with density measurements:

 $\rho_{\text{bulk}} = 2.20 \text{ g/cm}^3$ $\rho_{\text{film}} = 2.47 \text{ g/cm}^3$

peak identification Galeener, J. Non-Cryst. Solids 71, 1985

annealing

 remarkable evolution wrt annealing time modification of the R-band → different θ distribution reduction of D2 peak

SiO2 structure and loss

• loss measured on 3 SiO2 cantilever blades

• close correlation between D2 spectral evolution and loss

Ta2O5

annealing

- evolution with1st annealing
- weaker changes with 2nd annealing

Ta2O5 structure and loss

 loss measured on Si disks as dep.: $\Phi c = 1.2 \pm 0.1 e-3$ ann. -11: $\Phi c = 4.3 \pm 0.3 e - 4$ ann. – †2: $\Phi c = 4.3 \pm 0.3 e - 4$

> measured dilution factor $D \approx 1 - (fs/fcd)^2 \mu s/(\mu s + \mu c)$

no evolution after 1st annealing

work ongoing to correlate loss to Raman spectra 16-c-al 16-c-a2

• 16-c ▲17-c

summary

summary

- mode-dependent thermoelastic damping confirmed \rightarrow paper with model and measurements in preparation
- coating thermal noise measurements
 - \rightarrow improving mono-layer characterization
 - \rightarrow study ongoing on high-reflective stacks
- Raman spectroscopy to investigate coating structure
 - \rightarrow first observation of SiO2 structure/loss correlation
 - \rightarrow preliminary results on Ta2O5 work ongoing

acknowledgements

Fédération de Physique André-Marie Ampère (FRAMA)

