Why ET?

Fifth ET Symposium 22–23 October 2013, Hannover, Germany

B.S. Sathyaprakash

School of Physics and Astronomy, Cardiff University, UK

What Will ET Observe? Illustrated by Frequency-Mass Diagram

Sources last at most few hours starting at 5 Hz

Modulation of the signal due to Earth's rotation is not good enough to resolve the source on the sky

Scientific Questions only ET can Answer

ET Design Study Document

- Lists 18 questions that ET would address
 - 5 in Fundamental Physics
 - 5 in Cosmology
 - 8 in Astronomy
- Which of these are uniquely addressed by ET?
- Which critically require ET?
- Which are complementary to EM and other observations?

The problem of origins

- Where did black holes at galactic nuclei come from?
- An unsolved problem in cosmology
 - When did they first form? What were their masses? How did they grow to be so big, so fast?
- There is no known mechanism to form massive black holes from primordial gas; certainly not the supermassive BHs in giant ellipticals
 - If initial black hole masses were small then astrophysicists think they have not had enough time to grow so big
- If seed black holes are in the 10−100 solar mass range,
 ET will detect these systems at epochs before galaxy
 formation is believed to have occurred

Probing black hole mergers at $z \sim 5-20$

Probing black hole mergers at $z \sim 5-20$

Maximum Mass of a Neutron Star and Mass Gap

- Heaviest known neutron star has a mass of 2 solar masses
 - Although many equations of state are ruled out by this model many more remain
- Finding heavier neutron stars is not likely to fix the problem
 - Many EoS predict heavier neutron stars with exotic cores
- Measuring both NS mass and Radius is the key
 - If radius can be measured to within a few km then EoS will be very tightly constrained
- Advanced detectors would go someway but ET will be critical to resolving the issues

Other Important Questions

- Is GR the correct theory of gravity in strong gravitational fields
 - Strong field tests of GR using BNS; will be explored with TIGER infrastructure
- Do relativistic instabilities occur in young neutron stars?
 - Rare, once per 10 year events (possibly supernovae; also LMXBs)

Scientific Questions for which ET is Critical

- Understanding Supernova Core Collapse and Core Bounce
 - · rare, one per 10 year events
- What are the progenitors of GRBs?
 - hundreds to thousands of sources
- How do compact binaries evolve?
 - thousands to millions of sources
- What are the mass and spin distributions of neutron sars and black holes?
 - thousands to millions of sources
- What causes pulsar glitches and magnetar flares?
 - · rare, one per 10 year events

Working Group 1: Progress Report

Working Group 1: Tasks

- * Task 1: Carry out a series of mock ET data and science challenges of increasing complexity:
- Task 2: Explore how well astrophysical models of GW sources could be tested with ET
- **Task 3:** *Investigate possible strong field tests of GR with ET:*
- * Task 4: Probe ET's potential for understanding the geometry and dynamics of the Universe:

Working Group 1 Partners

Work Package Title	Lead Participant	Other Participants involved
ET's scientific potential	Cardiff	Nikhef, Polish ET, Birmingham Consortium, Glasgow, MSU- SAI, Nice

Work Package Title	Lead Participant	Other Participants involved
ET's scientific potential	Cardiff	Nikhef, Polish ET, Birmingham Consortium, Glasgow, MSU- SAI, Nice

- Task 1: Carry out a series of mock ET data and science challenges of increasing complexity:

 Tania Regimbau
 - Nice, Cardiff, NIKHEF, Rome, Amherst, Glasgow, Birmingham, Warsaw
 - 1 year worth of data, 3 data sets (for 3 ET detectors)
 - Contains binary neutron stars, binary black holes, GW bursts (supernova, pulsar glitches), stochastic, etc.
 - Some data validation but no detailed analysis yet

Work Package Title	Lead Participant	Other Participants involved
ET's scientific potential	Cardiff	Nikhef, Polish ET, Birmingham Consortium, Glasgow, MSU- SAI, Nice

- Task 2: Explore how well astrophysical models of GW sources could be tested with ET

 Ilya Mandel
 - Warsaw, Birmingham, Nice, Cardiff, NIKHEF
 - Computer models of binary evolution scenarios exist
 - Need to assess how well parameter estimation with ET will help differentiate among different models
 - MDCs are probably not needed

Work Package Title	Lead Participant	Other Participants involved
ET's scientific potential	Cardiff	Nikhef, Polish ET, Birmingham Consortium, Glasgow, MSU- SAI, Nice

- **Task 3:** *Investigate possible strong field tests of GR with ET:*
 - NIKHEF, Cardiff
 - Test of the no-hair theorem using ringdown signals only
 - Ringdown signals are simple:
 - frequency and time constant depend only on the final mass and spin of the black hole
 - Amplitudes of modes excited depends on progenitor masses and spins
 - Use TIGER infrastructure to test how well ET can test GR

Work Package Title	Lead Participant	Other Participants involved
ET's scientific potential	Cardiff	Nikhef, Polish ET, Birmingham Consortium, Glasgow, MSU- SAI, Nice

- **Task 4:** Probe ET's potential for understanding the geometry and dynamics of the Universe:
 - Cardiff, NIKHEF, Nice Birmingham
 - We know that binary neutron stars with EM counterparts are good for ET cosmology
 - Can measure w and its variation with redshift
 - We also know BBH sources without EM counterparts could be very useful for cosmology (Schutz's method)
 - Now working on realistic mock galaxies catalogues

Some example activities ...

- Maxim Fays (graduate student, Cardiff)
 - Exploring parameter estimation of overlapping signals using Bayesian inference techniques
- Maurycy Frejdlich (undergraduate student, Cardiff)
 - Testing massive graviton theories with ET
- Gemma Hughes (undergraduate student, Cardiff)
 - Assessing parameter estimation (masses and spins, distances, sky position, etc.) of low-mass systems (inspiral signal only)
- Duncan Meacher (graduate student, Nice)
 - Using gst_lal for ET analysis, potentially going down to 5 Hz
- Jeoren Meidam (graduate student, NIKHEF)
 - Testing GR with ringdown signals
- Jonathan Rawlins (undergraduate student, Cardiff)
 - Same as Hughes, focussing on high mass systems for which plunge and ringdown phases are important

Working Group 1: Deliverables in Year 1

		Year 1											
WG	Description	1	2	3	4	5	6	7	8	9	10	11	12
1	Mock ET data challenge: produce data												
	Explore and develop algorithms												
	Mock ET data challende: analyze data												
	Assess ET's ability to test strong field gravity												
	Assess ET's ability to do precision cosmology												
	Assess ET's ability to test astrophysical models												
	Publications on MDC and science capabilities												

Plans for the coming months ...

- Organise regular teleconferences amongst various partners
 - Periodic review of work
- Face_to_Face meetings of WG1
- Publication plans
 - Especially deliverables
- Present ET activities at prominent conferences
- Begin outreach activities