

http://antares.in2p3.fr

Status Report of the ANTARES Neutrino Telescope

Bruny BARET (APC - Paris 7)

for

the ANTARES Collaboration

ET ILIAS meeting, 26-11-2008, Pisa

1

1

High-energy neutrinos as cosmic messengers

- no absorption: travel across cosmological distances
- no deflection by magnetic fields: pointing accuracy
- weakly interacting: emerge from dense objects
 produced in photopion interactions: trace the hadronic processes in astrophysical sources

What to look at?

 γ TeV sources seen by HESS. AUGER UHECR AGN connection? Galactic Acceleration sites: SNR, magnetars SNR Xray binaries microquasars AGN, GRB... Exotics: Extragalactic Wimps, monopoles Quantum decoherence... Some are GW emitters =>Eric's talk near AGN G.R.B.

Detection principle

Detection principle

Signal: cosmic v's ~1-10/yr

Bruny Baret – ET ILIAS – 26/11/2008

ρ, α

atmospheric u

Physical backgrounds:

Signal: cosmic v's * ~1-10/yr

Bruny Baret – ET ILIAS – 26/11/2008

Physical backgrounds:

Signal: cosmic v's[™] ~1-10/yr

Atmospheric vs

atmospheric µ

ρ, α

~1/day

Bruny Baret – ET ILIAS – 26/11/2008

Physical backgrounds:

Signal: cosmic v's ~1-10/yr

The detector is buried deep
The detector looks downwards !

Bruny Baret – ET ILIAS – 26/11/2008

Atmospheric vs

atmospheric u

ρ, α

~1/day

atmospheric u

ρ, α

Physical backgrounds:

The detector is buried deep

The detector looks downwards !

Bruny Baret – ET ILIAS – 26/11/2008

Atmospheric vs

~1/day

How to discriminate from background?

Currently operating HE neutrino telescopes

completed May 30th, 2008 !

BAIKAL

(since 1998, upgraded 2005)

AMANDA/ICE CUBE

(since 2000, still deploying)

The ANTARES Collaboration

7 countries, 22 laboratories, ~150 engineers, sea scientists & physicists

The ANTARES Site

The ANTARES Site

Titanium frame : mechanical support

Optical Module (OM): 10" Hamamatsu photomultiplier

□ NIM A484 (2002) 369 □ NIM A555 (2005) 132

Optical Module (OM): 10" Hamamatsu photomultiplier

□ NIM A484 (2002) 369 □ NIM A555 (2005) 132

Optical Module (OM): 10" Hamamatsu photomultiplier

□ NIM A484 (2002) 369 □ NIM A555 (2005) 132

Hydrophone: Acoustic positioning

2002: deployment of Junction Box

April 2005: MILOM(mini-instrumented line with OMs)

March 2006: first line

September 2006: Line 2

➢ January 2007: Lines 3 − 4 − 5

December 2007: Lines 6 to 10 + new Instrumented Line (IL)

30th of May 2008: Lines 11 & 12 connected

The ANTARES detector is complete!

The ANTARES Detector: expected performance

Angular resolution

Effective area for ν [m²]

The ANTARES Detector: expected performance

Angular resolution

Effective area for v [m²]

Limitations:

- light scattering + chromatic dispersion in sea water: $\sigma \sim 1.0$ ns
- transit time spread in photomultipliers: $\sigma \sim 1.3 \ ns$
- electronics + time calibration: $\sigma < 0.5$ ns
- OM position σ < 10 cm ($\leftrightarrow \sigma$ < 0.5 ns)

The ANTARES Detector: expected performance

Angular resolution

Effective area for $v [m^2]$

Positioning system

Time calibration

Relative timing calibration: ~ 0.5 ns

Dark room measurements:

Δt(OM1-OM0)

In situ measurements: use optical beacon system

Bruny Baret – ET ILIAS – 26/11/2008 14

Optical backgrounds

- K⁴⁰ ~40 kHz
- Bioluminescence
 - Continuum ~ 30 kHz (but variable)
 - Short bursts: up to > MHz

Muon rate v.s. depth

16

Bruny Baret – ET ILIAS – 26/11/2008

Muon rate v.s. depth

1 line vertical muon flux

For 1 line Arrival time (t) of γ v.s. altitude (z) \Rightarrow Vary with zenithal angle and distance

 $\Pi(z,t) \cap \check{C} \text{ Cone} \Rightarrow \text{Hyperbol}$

For 1 line Arrival time (t) of γ v.s. altitude (z) \Rightarrow Vary with zenithal angle and distance

 $\Pi(z,t) \cap \check{C} \text{ Cone} \Rightarrow \text{Hyperbol}$

For 1 line Arrival time (t) of γ v.s. altitude (z) \Rightarrow Vary with zenithal angle and distance

For 1 line Arrival time (t) of γ v.s. altitude (z) \Rightarrow Vary with zenithal angle and distance

 $\Pi(z,t) \cap \check{C} \text{ Cone} \Rightarrow \text{Hyperbol}$

For 1 line Arrival time (t) of γ v.s. altitude (z) \Rightarrow Vary with zenithal angle and distance

For 1 line Arrival time (t) of γ v.s. altitude (z) \Rightarrow Vary with zenithal angle and distance

For 1 line Arrival time (t) of γ v.s. altitude (z) \Rightarrow Vary with zenithal angle and distance

An upgoing v candidate in the 5 Lines detector

Bruny Baret – ET ILIAS – 26/11/2008 19

A ν in the 12 Lines detector

Bruny Baret – ET ILIAS – 26/11/2008 20

E-M shower detection

From muon bremsstrahlung

On line event display http://www.nikhef.nl/~mjg/display/

E-M shower detection

Systematic effects:

- ±20% absorption length
- PMT acceptance

A muon bundle in the 5 Line detector

12 line muon bundle and E-M shower

MC-Data agreement and cuts on $\nu_{\rm atm}$ - $\mu_{\rm atm}$

Before cuts: difference MCtruth/Reco. =>contamination by atmospheric µ reconstructed as upward

MC-Data agreement and cuts

Data with the 5 Line detector 06->12/2007

More and more lines...

10 lines 12/07-04/08 109 active days

12 lines 06/07 14 active days

+11 single line evt.

+88 single line evt.

First limits & expected sensitivities

Point Sources of neutrinos

Conclusions & outlook

ANTARES detector complete, alive and working !

- Technology proven
 - Detector under control
- Data analysis in progress
 - nearly 500 neutrino events selected
 - first physics results and much more coming

Stay tuned!

Ready for next step with KM3NeT Detector.....

It's alive!

Lizard suicide

Hard work to repair

New spokesman

http://antares.in2p3.fr/News/CableReparation/cablefix.swf

Backup: optical properties

[λ ~ 460 nm] (blue)	Absorption length [m]	Scattering length [m]	Angular Resolution [°] (< 0.1km ^{2,} E>10 TeV)
South Pole Ice	≤ 100	≤ 25	3°
Lake Baikal	≥ 15	> 300	1.5°
Mediterranean Sea	55	> 300	0.2°

Detector Systematics

- systematic error due to +/- 10% on absorption length = +25%/-20%;
- syst. err. due to -15% on PMT efficiency (QE, eff. area etc) = -15%;
- syst. err. due to cutoff in angular accept. = +20%/-15%;
- total systematic uncertainty +/- 30%.

Systematics from flux model

- +30% for primary flux;
- +25% for the hadronic shower model;
- total systematic uncertainty +40%.

The ANTARES Detector: deployment phases

Duration of lines in the sea

...and Junction Box in water for 5 ¹/₂ years

Time calibration with Potassium 40

Presence of ⁴⁰K in salty water: ⁴⁰K \rightarrow ⁴⁰Ca ∇_{e} e⁻

can be used for charge and time calibration of the detector

Expected neutrino flux from the Sun

- Neutralino LSP in mSugra theory
- mSugra parameter space through: m₀,m_{1/2},A₀,tan(β),sign(μ)

Backup : Background noise expected...

Muons distribution over zenith angle

Backup : Trigger

Before to really reconstruct a muon track, there are five data processing levels from the data taking to the discovering of potential events:

- Level 0 (L0) : All hits
- Level 1 (L1) : local trigger search
 - local coinciding hits in a time gate (~20 ns) on 2 PMTs of the same floor
 - and/or all hits with charge > threshold param. (~2.5 p.e.)
- Level 2 (L2) : global trigger search
 - Space-time relation between signals due to unscattered light from the same muon trajectory or bright point
 - assuming: high relativitic muons, slowest possible speed c/n (n~1.35). For two hits, causality implies:

$$\Delta t = \frac{n}{c} \Delta x$$

 Δt : time between hits Δx : diff. Between PMTs positions

Backup : Trigger

• Level 2 (L2) :

• if the number of correlated hits > "minClusterSize" parameter(~4) \rightarrow Cluster

For example for a 3D Trigger:

Minimum number of hits in the cluster = 5

Minimum number of floors in the cluster = 5

Minimum charge of the largest hits in the

cluster = 0.3 p.e.

🗸 etc...

• Level 3 (L3) : merging of overlapping events

- each event contains a snapshot of all hits in a time window around the cluster tmaxCausal \sim 2.2 μs
- All hits within causality condition added
- Level 4 (L4) : event building

 All raw hits collected in a snapshot and combined into "PhysicsEvent" with data of clusters

Backup : Trigger

After, all processing levels used into different forms of triggers which look for:

- 1D : time correlated hits in a given direction (L0 data in input)
- 3D : time correlated hits from any directions (L1 data in input)
- MX : similar to 1D + one local coincidence (1 L1) to speed up the processing of L0 data

And the number of L0 or L1 levels for each trigger can vary...

At the end, the muon track reconstruction strategy can apply to the selected hits...

Backup : Reconstrustion Strategy

• Step 1 : Linear prefit by χ^{2} -minimization over local coincidences and integrated charge of hits

• step 2 : M-estimator minimization

$$G = \sum_{i} K(-2\sqrt{1 + A_{i}r_{i}^{2}/2}) - (1 - K)f_{ang}(a_{i})$$

 A_i = charge, r_i = time residual, f_{ang} = angular factor, K=0.05 (MC simulation)

• step 3 : Likelihood-maximization

$$P(event | track) = prod_i P(t_i | t_i^{th})$$

A likelihood cut is preformed to discriminate the « real » up-going events compare to the down-going muon misreconstructed.

Backup : Neutrinos Effective Area

Backup : Neutrinos cross sections

 $\sigma_{cc,v}$ from CTEQ coll. Parton Distribution Functions

Backup : Energy reconstruction

Factor 2 or 3 at low energy (<O(TeV))