Length sensing and control for ET-LF

Sean Leavey¹ and Vaishali Adya^{2,3} and Christian Gräf¹, Stefan Hild¹ and Harald Lück^{2,3}

¹SUPA, University of Glasgow, UK

²Max-Planck-Insitut für Gravitationsphysik (Albert-Einstein-Institut), Hannover, Germany

³Institut für Gravitationsphysik, Leibniz Universität, Hannover, Germany

19th November 2014

Contents

- Quick reminder of ET-LF
- What's the problem?
- What have we "optimised"?
- An introduction to the simulation models
- DARM offset: why do we need it?
- Sensitivity: how close are we to design?
- Control matrix
- Outlook

Quick reminder of ET-LF

- Underground facility, equilateral triangle with 10 km between corner stations
- Detuned signal recyling, 10 dB frequency dependent squeezing, 211 kg mirrors.
- Modified superattenuator, 17 m tall
- Cryogenic infrastructure
- 10 K, silicon, 12 cm beam radius, TEM00

3 Comer
Grin-HP C C C
1810-LF (V)

What's the problem?

- ET-LF will be most sensitive around 7 to 30 Hz
- Control noise at low frequency is potentially high
- Reduction in size of error signal locking range at low frequencies
 - We want to detune to 25 Hz which has not been done before
- We need to model the interferometer to assess its controllability
- To model it we need to make decisions about certain loosely- or un-defined parameters from the design study
- All modelling undertaken so far is transferrable to ET-HF

S. Leavey and V. Adya

Sensing ports and length terminology

- In a dual-recycled interferometer there are five degrees of freedom to handle:
 - CARM = $\frac{L_Y + L_X}{2}$ • DARM = $\frac{L_Y - L_X}{2}$
 - MICH = $l_Y l_X$
 - **PRCL** = $I_P + \frac{l_Y + l_X}{2}$
 - SRCL = $I_S + \frac{l_Y + l_X}{2}$
- Sensing ports:
 - **REFL**: behind the power recycling mirror
 - POP: behind the beamsplitter
 - AS: behind the signal recycling mirror
 - **POX**: reflected light from arm cavities

Relevant ET-LF design parameters like mirror specifications, arm lengths etc. taken from page 347 of the design study.

Additional optimisations:

- PRM transmissivity
- Sideband frequencies
- Schnupp asymmetry
- SRC length

	ET-HF	ET-LF		
Approximate frequency range	$10-10^4 \text{ Hz}$	1-250 Hz		
Detection scheme	DC readout	DC readout		
Input power (after IMC)	500 W	3 W		
Laser wavelength	1064 nm	1550 nm		
Beam shape	LG_{33}	TEM_{00}		
	ARM CAVITIES			
Arm length	10 km	10 km		
Opening angle	60 °	60 °		
Arm power	3 MW	18 kW		
Temperature	290 K	10 K		
Mirror material	fused silica	silicon		
Mirror diameter	62 cm	$>45 \mathrm{cm}$		
Mirror thickness	30 cm	about 50 cm		
Mirror mass	200 kg	211 kg		
Beam radius (at mirror)	7.2 cm	$9.0\mathrm{cm}$		
Beam waist (symmetric cavity)	2.51 cm	2.9 cm		
RoC (symmetric cavity)	5690 m	5580 m		
Scatter loss per surface	37.5 ppm	37.5 ppm		
Finesse	880	880		
Reflective coating ITM	tantala/silica	tantala/silica		
	$8 \lambda/4$ doublets	$9 \lambda/4$ doublets		
Reflective coating ETM	tantala/silica	tantala/silica		
	17 $\lambda/4$ doublets	18 $\lambda/4$ doublets		
Transmission ITM	7000 ppm	7000 ppm		
Transmission ETM	6 ppm	6 ppm		

Choice of modulation frequencies

Requirement

Decoupled error signals are needed to control various lengths

Problem

Presence of SRM introduces back coupling of SRCL error signal to other degrees of freedom. Carrier too coupled to use as a control signal.

Solution

Use sidebands! Sidebands with specific resonance conditions provide us with artificial fields which can be used to obtain decoupled error signals.

Choice of modulation frequencies

- The first sideband resonant only within the PRC
- The second sideband: resonant within both the PRC and SRC
- Both sideband frequencies anti-resonant in the arm cavities
- The modulation frequencies are resonant in the GEO-style IMC (not yet implemented in models) of lengths 20.541 m and 21.150 m

Schnupp asymmetry

- By default, the sidebands can't enter the SRC
- Introducing a Schnupp asymmetry allows the sidebands to leak into the SRC for the purposes of control. It was set to 5 cm although another choice would have been 0.4 m.
- Smaller asymmetry chosen for lower frequency noise coupling

Signal recycling cavity length

The signal recycling cavity length was changed from 310 m to 312.634 m to prevent resonance of f_1 affecting signal separation.

Introduction to the simulation models

- Two models using FINESSE and Optickle simulation packages
- FINESSE (and PyKat): higher order modes, parametric instabilites
- Optickle: control loop noise
- Detection ports used: arm cavities, PRC, SRC, light reflected back to laser
- Carrier and sideband powers at different detection ports agree

Parameter	Value
P _{xArm}	17.337 kW
P _{yArm}	17.333 kW
P _{asymmetric}	0.129 W
P _{PR}	62.903 W

2	% as part of previous work in sibling project directories.
- 3	N Contraction of the second
- 4	% Sean Leavey
5	% November 2014
- 6	
7	W Define stuff
8	
.9	5 Frequency to calculate the response of the IFO for.
10	r = 1;
11	
12	NN DUILD EI-LF MODEL
1.5	THE PARTY OF THE LEVA
14	par = parallero_cP();
16	k opt parameters for ET-LE
17	par = genuitickleParms(par):
18	
19	% get Optickle model for ET-LF
20	opt = opt ETD LF(par);
21	
22	W add some probes
23	
24	% probe reflected light
25	<pre>[opt, n_REFL_DC] = addProbeIn(opt, 'REFL_DC', 'REFL', 'in', 0, 0);</pre>
26	<pre>[opt, n_REFL_I1] = addProbeIn(opt, 'REFL_I1', 'REFL', 'in', par.Mod.f1, 0);</pre>
27	<pre>[opt, n REFL 01] = addProbeIn(opt, 'REFL 01', 'REFL', 'in', par.Mod.f1, 98);</pre>
28	[opt, n_REFL_12] = addProbein(opt, 'REFL_12', 'REFL', 'In', par.Mod.T2, 0);
29	[opt, n REFL U2] = addrobein(opt, REFL U2, REFL 1, in, par. Nod. 12, 98);
30	[opt, merc 201] = ddrobeln(opt, Nerc 201), Nerc , 10, 2 - par.Nod.11, 0);
31	lopt, n REPL 2011 = addProbeIn(pt, REPL, IN, 2 - par.Mod.11, S0);
32	[opt, in REF_2712] = dolf ophoto[in(opt, inEF_2712, inEFC, inf, 2 = par. Mod. (2, 0)]
3.4	[opt, n DEFL_SIMT] = addProheTn(upt, Note_SIMT) 'DEFL' 'in' par Mod f2, par Mod
35	[ont n REF_SIM0] = addProbeTrippt, 'REF_SIM0, 'REFL', 'In', par Nod f2 + par Nod
36	loot, n REFL DIFFI1 = addProbeIn(pot, 'REFL DIFFI', 'REFL', 'in', par. Mod. 12 - par. Mc
37	(opt, n REFL DIFFQ) = addProbeIn(opt, 'REFL DIFFQ', 'REFL', 'in', par.Mod.f2 - par.Mc

DARM offset: why do we need it?

- DC readout: homodyne local oscillator created by putting a small offset into the MICH or DARM degree of freedom
- The carrier that leaks out behaves as a LO
- DC readout moves the interferometer slightly **off** of the dark fringe
- Realistic DC readout included in both the models such that no more than 100 mW is incident on the photodiodes
- The DC power in the AS port due to DARM offset is **quadratic** in DARM offset
- Detune the ETMs and not the BS or the ITMs

Sensitivity: how close are we to design?

- Comparision between DARM quantum noise limited sensitivity obtained from Optickle and PyKat to the design study
- Matches the design study apart from the 10 dB squeezing effect

- What is a control/sensing matrix?
 - The sensing matrix describes the relation between the DOFs and signal extraction ports
 - Ideal case: matrix diagonal implying all sensing signals are decoupled. However this is not the case and we get non zero off diagonal elements.

POP_I1	DOF
-8.66E+07	CARM
-8.10E+03	DARM
5.35E+02	MICH
1.38E+05	PRCL
1.31E+03	SRCL

MICH	PORTS
-1.30E+02	refli1
-6.33E+01	refla1
1.07E+03	refli2
2.71E+03	refla2
2.61E+02	refi2fi
7.51E+02	refi2to
-5.18E+02	refi2t2i
6.03E+02	refl2f2g
-1.58E-02	refl f2-f11
-2.65E-03	refl f2-f1O
-1.01E-02	refl f2+f1I
-2.42E-03	refl 12+110
-9.13E+04	asi1
4.84E+04	asg1
-2.85E+06	asi2
-1.05E+05	asg2
-6.32E+01	as2fi
-4.25E+01	as2fg
-2.44E+01	as2f2i
2.46E+00	as2f2g
-4.93E-02	as f2-f11
-1.20E-01	as f2-f1Q
6.23E-02	as f2+f1I
6.09E-02	as f2+f10
5.35E+02	popi1
-6.78E+03	popq1
5.55E+04	popi2
1.10E+05	popq2
1.42E+01	pop2fi
8.96E+00	pop2fq
8.18E+00	pop2f2i
-1.47E+01	pop2f2q
9.45E-03	pop_f2-f1l
2.40E-03	pop_f2-f1Q
1.39E-02	pop_f2+f1I
-2.02E-02	pop f2+f1Q
1.85E+07	poxi1
-2.92E+08	poxq1
-3.54E+08	poxi2
-1.25E+08	poxq2
6.11E+03	pox2fi
-5.82E+04	pox2fq
3.15E+03	pox2f2i
5.67E+04	pox2f2q
-1.21E+01	pox_f2-f11
8.07E+00	pox_f2-f1Q
-7.38E+01	pox_f2+f1I
7.38E+01	pox_f2+f1Q

The control matrix

Modelling the IFO with these new conditions, we can see where best to control each DOF:

- CARM can be controlled with f_1 at REFL
- **PRCL** can be controlled with **f**₁ in **POP** (CARM and PRCL coupled)
- DARM can be controlled with DC at AS
- **MICH** can be controlled with **f**₂ in **POP** (DARM, MICH, SRCL coupled)
- **SRCL** can be controlled with the f₂ that leaks into the SRC and then back out into the PRC (at **POP**)

# CARM	DARM	MICH	PRCL	SRCL	PORTS
3.37E+08	3.38E+04	1.65E+02	-5.87E+05	-6.45E-01	refil1
1.08E+08	1.08E+04	5.15E+01	-1.89E+05	-2.42E-01	reflq1
1.55E+08	1.55E+04	5.20E+03	-2.93E+05	-5.60E+03	refli2
-4.69E+07	-4.67E+03	7.52E+03	9.17E+04	3.03E+03	reflq2
-1.16E-04	2.57E-06	5.13E-05	2.62E-03	-3.46E-07	refl2fi
1.65E-04	-2.68E-06	-5.84E-05	-3.77E-03	3.54E-07	refi2fq
-1.36E-05	-1.78E-05	-7.51E-03	6.56E-03	1.38E-03	refi2f2i
-1.06E-05	1.23E-05	5.78E-03	6.75E-03	2.21E-03	refl2f2q
-2.39E-01	-7.77E+08	-1.37E+06	5.50E+00	4.05E-02	asi1
1.75E-01	8.16E+06	1.44E+04	-4.09E+00	1.54E-01	asq1
-9.86E+00	4.87E+10	8.56E+07	3.40E+03	-7.33E+02	asi2
-8.14E+00	-4.30E+10	-7.55E+07	2.85E+03	-5.91E+02	asq2
-7.16E-06	-3.19E-05	-7.39E-04	1.72E-04	6.06E-06	as2fi
1.07E-05	4.76E-07	1.05E-05	-2.43E-04	-3.80E-06	as2fq
1.77E-02	8.36E-04	5.96E-01	-5.40E+00	1.03E+00	as2f2i
1.51E-03	-3.14E-03	-6.67E-01	-5.42E-01	1.25E-01	as2f2q
-6.01E+07	-5.99E+03	3.68E+02	9.59E+04	-3.46E+00	popi1
-7.58E+07	-7.79E+03	-4.55E+03	-1.41E+05	2.85E+01	popq1
1.35E+08	1.37E+04	1.13E+05	-3.98E+04	6.19E+04	popi2
-8.34E+07	-7.81E+03	2.23E+05	1.79E+04	-2.31E+04	popq2
-3.55E-05	5.00E-07	1.19E-05	8.25E-04	-8.07E-08	pop2fi
-4.22E-05	8.11E-07	1.77E-05	9.72E-04	-1.10E-07	pop2fq
1.57E-05	1.17E-05	4.94E-03	-8.11E-03	-1.98E-03	pop2f2i
5.46E-06	-1.82E-05	-8.09E-03	-3.79E-03	-1.53E-03	pop2f2g

Outlook

- Implement detuned SRC in models
- Optimisation of demodulation phases used for RF readout
- Optimisation of the control matrix for detuned signal recycling case
- Complete noise budget for sensing and control of ET-LF

What we still need

- Suspension TFs
- Seismic and facility noise
- Laser intensity/phase noise
- Oscillator phase/intensity noise and control noise

The End!

