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Core-collapse supernovae

★ Several models have been proposed to explain the processes 
behind core-collapse supernovae

★ These models lead to different gravitational wave emission 
mechanisms

★ Numerical simulations of the various 
mechanisms have produced catalogues of 
waveforms for the different mechanisms

★ Can we distinguish between the 
waveforms from the different catalogues 
and, thus, learn about the astrophysics 
behind core-collapse supernovae?
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http://www.stellarcollapse.org/

http://www.stellarcollapse.org
http://www.stellarcollapse.org
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Core-collapse supernova

★ Chose 3 initial catalogues to 
develop analysis

★ Neutrino mechanism - use Murphy 
et al. 2009 catalogue with 16 
waveforms

★ Magnetorotational mechanism - use 
Dimmelmeier et al. 2008 catalogue 
with 128 waveforms

★ Acoustic mechanism - use Ott et 
al. 2009 catalogue with 7 
waveforms
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SMEE

★ Use the Supernovae Model 
Evidence Extractor (SMEE) to 
distinguish between waveforms 
from different catalogues

★ SMEE:
1. reparameterises waveforms into a 

set of orthonormal basis vectors

2. uses Bayes factor to compare the 
likelihood that the observed signal 
belongs to one catalogue as 
opposed to another catalogue* 
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*the other “catalogue” could also be noise 
or a model for known spurious noise
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Singular Value Decomposition

★ consider a catalogue of M waveforms, each N samples long

★ arranged into a matrix A (NxM) such that each column 
corresponds to one waveform

h1 =





h1(t1)
h1(t2)

...
h1(tN )
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A =





h1(t1)h2(t1) . . . hM (t1)
h1(t2)h2(t2) . . . hM (t2)

...
. . .

...
h1(tN )h2(tN ) . . . hM (tN )





tim
e
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Singular Value Decomposition

★ Singular Value Decomposition (SVD) states that A can be 
factored into

★ where U is NxN, V is MxM and Σ is NxM

★ U is a matrix where the columns are the eigenvectors of AAT

★ V is a matrix where the columns are the eigenvectors of ATA

★ Σ has the square roots of the eigenvalues on its diagonal
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A = UΣVT
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Principal Component Analysis

★ Note that AAT is the covariance matrix for the data in A

★ So, for our data matrix, A, the eigenvectors in U (Principal 
Components) form an orthogonal basis than spans the 
parameter space defined by the data

★ The eigenvectors are ranked by their corresponding 
eigenvalue

★ The first Principal Component is the eigenvector with the 
largest corresponding eigenvalue

- direction of the largest variance in the data set

★ The original set of waveforms that were used to construct A 
can now be described as a linear combination of the Principal 
Components in U
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Principal Component Analysis
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Reconstructing the signal
★ If we use all M Principal Components, we can reconstruct all 

waveforms identically

★ The Principal Components are an efficient basis for spanning the 
parameter space described by the waveforms

★ One can approximate each waveform by taking a linear 
combination of k Principal Components, were k < M

★ Here, βj is the scalar coefficient for the j-th Principal Component

★ The corresponding eigenvalues indicate how well the choice of k 
Principal Components will reconstruct the original waveforms
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hi ≈
k�

j=1

Ujβj
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Bayesian model selection
★ The Bayes factor is the ratio of the marginalised likelihoods for two 

competing models

★ If B12 > 1, M1 is preferred. If B12 < 1, M2 is preferred

★ If B12 = 1, then there is insufficient information in the data to 
support either model

- noise introduces an uncertainty which enlarges this to a “region of 
ambiguity”

★ Here, M1 and M2 are the different core-collapse supernova 
mechanisms

- these models can also be the ratio of the likelihood that the data 
contains a signal versus noise only
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B12 =
p(D|M1)

p(D|M2)
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The signal model
★ Since simulated noise is used, we assume a Gaussian likelihood 

for our signal model, Ms, 

★ Here, σ is the expected noise, Di is the i-th data point, hi is the 
reconstructed model signal from Principal Components and β 
are the amplitudes or coefficients for reconstructing the signal

★  To obtain the evidence,  marginalise over all expected values 
of β such that
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p(D|β,Ms) ∝ exp

�
−

N�

i=1

(Di − hi(β))2

2σ2
i

�

p(D|Ms) =

βmax�

βmin

p(β|Ms)p(D|β,Ms)dβ
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Investigations with 
Advanced LIGO noise

★ Simulate noise for 
Advance LIGO in 
“zero detuning, high 
power” configuration

- ZERO_DET_high_P.txt, 
publicly available from 
LIGO DCC
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https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288

https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288
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Distinguishing SNe models
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Bi = p(D|Mi)

log(BDimMur) = logBDim − logBMur

cannot distinguish 
between models



LIGO-G1201265-x0

Distinguishing SNe models
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Most signals are 
correctly identified!

Only a small fraction of 
neutrino mechanism 

waveforms returning an 
ambiguous Bayes factor

Results are published in 
Phys. Rev. D 86 (4) 044023
(arXiv:1202.3256)
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Distinguishing SNe models

★ The mechanisms 
examined so far produce 
quite different waveforms

★ Also compared 
Dimmelmeier waveforms 
to Accretion Induced 
Collapse (AIC) waveforms

★ AIC: collapse of accreting 
carbon white dwarfs

★ Use catalogue by 
Abdikamalov et al. 2010
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10 kpc
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Distinguishing SNe models
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log(BAbdDim) = logBAbd − logBDim

Again, most signals are correctly identified for a supernova at 10 kpc
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Investigations with ET noise

★ We injected the signals at 10 kpc and 778 kpc (Andromeda) 
into the ET-B noise curve

- we will use something more current next time...
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http://arxiv.org/abs/1206.0331

http://arxiv.org/abs/1206.0331
http://arxiv.org/abs/1206.0331


LIGO-G1201265-x0

Supernova in Galactic Centre (ET)
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There is no ambiguity
when identifying the 

supernova mechanisms!

SNRs: Dim ~1000, 
Mur ~200, Ott ~1500 
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Supernova at Andromeda (ET)

20

<
-1

0k
<

-1
k

<
-1

00 ≤-
5

-5
–

5 ≥5
>

10
0

>
1k

>
10

k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
D = 778 kpc

log(BDimMur)

Fr
ac

tio
na

lC
ou

nt

Magnetorotational
Mechanism (Dim)
Neutrino
Mechanism (Mur)

<
-1

0k
<

-1
k

<
-1

00 ≤-
5

-5
–

5 ≥5
>

10
0

>
1k

>
10

k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
D = 778 kpc

log(BDimOtt)

Fr
ac

tio
na

lC
ou

nt

Magnetorotational
Mechanism (Dim)
Acoustic
Mechanism (Ott)

<
-1

0k
<

-1
k

<
-1

00 ≤-
5

-5
–

5 ≥5
>

10
0

>
1k

>
10

k
0.0

0.2

0.4

0.6

0.8

1.0 D = 778 kpc

log(BMurOtt)

Fr
ac

tio
na

lC
ou

nt

Neutrino
Mechanism (Mur)
Acoustic
Mechanism (Ott)

SNRs: Dim ~13, 
Mur ~2, Ott ~20 

Note: We have 
assumed that the signal 

is detected and GW 
signal time is known. ie 
false alarm rate is not 

considered!

Most waveforms 
can still correctly 

identified.
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ET MDC

★ Two supernova waveforms were injected into the latest ET 
Mock Data Challenge (MDC)

★ One from Dimmelmeier et al. 2008 catalogue and the other is 
a long bar waveform using the waveform proposed by Fryer, 
Hughes, Holz 2002 

★ SMEE will be run on these 
injections
- need to include long bar signal model
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L. Santamaria et al., LIGO-DCC-G1100014
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Summary and 
future work

★ The proposed method, SMEE, has demonstrated its ability to 
associate an observed core-collapse supernova gravitational 
wave signal with the correct waveform catalogue

★ This allows us to infer the astrophysics behind the core-
collapse supernova from the detected gravitational wave signal

★ Further features are required for SMEE and work is underway 
to implement them

- analyse multi-detector data, incorporate time uncertainty and antenna 
patterns, use power spectra or time-frequency data,.....

★ Investigate waveform reconstruction from SMEE outputs

★ Extend SMEE framework for analysis towards a broader Burst 
parameter estimation and glitch classification
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