

# TIGER's tail: Testing the no-hair theorem with black hole ringdowns.

J. Meidam, M. Agathos, C. Van Den Broeck, J. Veitch and B. S. Sathyaprakash



#### 19 Nov 2014, Lyon

Meidam et al., Phys. Rev D 90 (2014) 064009



- *No-hair theorem*: Final stationary black hole vacuum state is determined only by its mass *M* and spin *J*.
- Quasinormal modes are characterized by mode frequencies and damping times  $\omega_{lm}(M, J)$  and  $\tau_{lm}(M, J)$ .
- Deviations from predicted mass and spin dependence can be written as:

$$\omega_{lm} = \omega_{lm}^{\rm GR}(M, J)(1 + \delta\hat{\omega}_{lm}), \qquad (1)$$

$$\tau_{lm} = \tau_{lm}^{\rm GR}(M, J)(1 + \delta \hat{\tau}_{lm}) \tag{2}$$

• Use multiple detections from ET to test the no-hair theorem



#### Previous work

- Two methods:
  - M = 500 1000 M<sub>☉</sub>, D<sub>L</sub> = 6 Gpc (z ~ 1): Determined mausurability of δû<sub>22</sub>, δû<sub>33</sub> and δτ̂<sub>22</sub>.
    ⇒ Accuracies of a few percent for the first two, and about 10% for the third.
  - 2  $M = 500 \,\mathrm{M}_{\odot}$ , compare evidences for two models:
    - model1:{ $\delta\hat{\omega}_{22}, \delta\hat{\omega}_{33}, \delta\hat{\tau}_{22}$ } free parameters,
    - model2: parameters are zero, i.e. the GR prediction.
    - $\Rightarrow$  Deviation of a few percent in  $\delta \hat{\omega}_{22}$  could be discriminated from GR.

Gossan et al. Phys. Rev. D 85, 124056 (2014)

3



## Using multiple detections

- Coalescence rates in the range  $500 1000 M_{\odot}$  estimated between one and a few thousand per year.
- Maximally exploit available set of detections by combining information from many sources.
  - **()** Combining posteriors for  $\delta \hat{\omega}_{22}$ ,  $\delta \hat{\omega}_{33}$  and/or  $\delta \hat{\tau}_{22}$  not possible unless assuming GR is correct.
  - **2** Bayesian model selection well suited. However, if  $\{\delta \hat{\omega}_{22}, \delta \hat{\omega}_{33}, \delta \hat{\tau}_{22}\}$  allowed to vary at the same time, one may be penalized if correct model involves a smaller number of additional parameters.



## Test Infrastructure for GEneral Relativity

- TIGER is designed and well tested for binary neutron star sources and advanced detectors.
- TIGER is well suited for low SNR and information from a population of sources can be combined.
- Simply put: TIGER compares evidences between two hypotheses:
  - $\mathcal{H}_{GR}$ : GR is correct
  - $\mathcal{H}_{modGR}$ : One or more parameters deviate from zero.
- Use odds ratio to compare models

$$\mathcal{O}_{GR}^{\text{modGR}} \equiv \frac{P(\mathcal{H}_{\text{modGR}}|d, I)}{P(\mathcal{H}_{\text{GR}}|d, I)}$$
(3)

Agathos et al. Phys. Rev. D 89, 082001 (2014)

Li et al. Phys. Rev. D 85, 082003 (2012)



No-hair theorem TIGER

#### What are the odds?





#### Hypotheses

• The dimensionless parameterized deformations are  $\{\delta\hat{\omega}_{22}, \delta\hat{\omega}_{33}, \delta\hat{\tau}_{22}\}$ . Recall that

$$\begin{split} \omega_{lm} &= \omega_{lm}^{\rm GR}(M,J)(1+\delta\hat{\omega}_{lm}),\\ \tau_{lm} &= \tau_{lm}^{\rm GR}(M,J)(1+\delta\hat{\tau}_{lm}) \end{split}$$

• The four cases analyzed in this work are:

$$\begin{array}{l} \bullet (\delta\hat{\omega}_{22},\delta\hat{\omega}_{33},\delta\hat{\tau}_{22}) = (0.1,0,0). \\ \bullet (\delta\hat{\omega}_{22},\delta\hat{\omega}_{33},\delta\hat{\tau}_{22}) = (0,0.1,0). \\ \bullet (\delta\hat{\omega}_{22},\delta\hat{\omega}_{33},\delta\hat{\tau}_{22}) = (0,0,0.1). \\ \bullet (\delta\hat{\omega}_{22},\delta\hat{\omega}_{33},\delta\hat{\tau}_{22}) = (0,0,0.25). \end{array}$$



Testing the no-hair theorem with TIGER Constraining the free parameters

#### Single sources vs. combined sources





Testing the no-hair theorem with TIGER Constraining the free parameters

#### Single sources vs. combined sources





Testing the no-hair theorem with TIGER Constraining the free parameters

#### Efficiency



9



Testing the no-hair theorem with TIGER Constraining the free parameters

#### Efficiency





Testing the no-hair theorem with TIGER Constraining the free parameters

#### Parameter estimation





Testing the no-hair theorem with TIGER Constraining the free parameters

#### Parameter estimation



10

TIGER's tail



#### Summary

- Previous work has shown how deviation of a few percent in  $\omega_{22}$ ,  $\omega_{33}$  and  $\tau_{22}$  could be observed up to  $z \sim 1$  ( $D_{\rm L} \sim 6$  Gpc).
- We used the TIGER framework to maximally exploit the available set of detections from ET in a low SNR scenario.
- We show that a deviation of a few percent can be observed up to  $z \sim 5 (D_L \sim 50 \text{ Gpc})$ , when combining  $\mathcal{O}(10)$  sources.
- When GR is not in doubt, upper limits can be placed on deviations.





## Thank you





• For violations of the no-hair theorem we found the following efficiencies:

|                                  | single source    | 10 sources     | 50 sources     |
|----------------------------------|------------------|----------------|----------------|
| $\delta\hat{\omega}_{22} = 0.10$ | $\sim 60-65\%$   | > 98%          | > 99%          |
| $\delta\hat{\omega}_{33} = 0.10$ | $\sim 60-65\%$   | > 95%          | > 99%          |
| $\delta \hat{\tau}_{22} = 0.10$  | $\sim 7-10\%$    | $\sim 7-18\%$  | $\sim 7-18\%$  |
| $\delta \hat{	au}_{22} = 0.25$   | $\sim 10 - 14\%$ | $\sim 12-30\%$ | $\sim 20-70\%$ |

• When GR is not in doubt, the following constraints could be placed on the free parameters:

|                           | single source | 20 sources | 50 sources   |
|---------------------------|---------------|------------|--------------|
| $\delta\hat{\omega}_{22}$ | 0.10          | 0.0051     | $\sim 0.001$ |
| $\delta\hat{\omega}_{33}$ | 0.13          | 0.0051     | $\sim 0.001$ |
| $\delta \hat{\tau}_{22}$  | 0.21          | 0.0480     | $\sim 0.1$   |



### More advantages to using TIGER

- Combining sources greatly improves ability to test the no-hair theorem.
- Using multiple subhypotheses has a significant impact in finding deviations.





### More advantages to using TIGER

- As sources are combined, two observations can be made:
  - $H_{123}$  ({ $\delta\hat{\omega}_{22}, \delta\hat{\omega}_{33}, \delta\hat{\tau}_{22}$ } are left free) is depricated compared to some others!
  - 2 The correct hypothesis is not always the most dominant one!







Gossan et al. Phys. Rev. D 85, 124056 (2014)