Accurate SNR estimates and parameter estimation calculations for ET IMRIs

Eliu Huerta (IoA, Cambridge)

Jonathan Gair (IoA, Cambridge)

Outline

- Motivation to study IMRIs in the context of the ET
- Basic ingredients to perform a Fisher Matrix Analysis
- Beyond inspiral
- Results from selected cases
- Conclusions and future work

Motivation

- To compute estimates of the accuracy with which ET can measure the parameters for IMRIs the inspirals of small compact objects (CO) (1.4 10 M_{\odot}) into black holes of intermediate mass (IMBH).
- In particular: can we obtain reasonable estimates for the binary's extrinsic parameters, i.e., its location in the sky?
- Is a single ET sufficient? Does an IMRI spend enough time in band for the motion of the Earth to provide extrinsic parameter determination?
- A single ET WILL NOT provide satisfactory estimates for the extrinsic parameters, e.g., for a (10 + 100) M_{\odot} system, $\Delta \theta_s$ 300 and $\Delta \phi_s$ 200, for q = 0.9 and D = 6Gpc.

Ingredients for FM analysis

- Response function one or two right-angle interferometers at each site, but need to change the angles describing source direction and orientation using the actual location of the various detectors on the Earth.
- Network of ETs, computation of FMs using the appropriate timelags.
- Considering inspiral-only waveforms, an ET network does provide accurate estimates for the extrinsic parameters for IMRIs (Jon's talk).

ET			Network		
$\Delta heta_{ m s}$	$\Delta \phi_{ m s}$	SNR	$\Delta heta_{ m s}$	$\Delta \phi_{ m s}$	SNR
318	189	248	0.06	0.08	571

Ingredients for FM analysis

- For the binary systems under consideration, not only the inspiral but also the merger and ringdown parts contribute significantly to the SNR (Ajith, CQG, 2009).
- Need to extend this model to implement merger and ringdown consistently.
- To start with we build a model for the inspiral, merger and ringdown of a stellar mass CO onto a non-spinning black hole of intermediate mass.

 Inspiral model taken from Huerta & Gair, 2009. We include the dominant l=2, m=2 and l=2, m=-2 modes. The kludge waveform is computed using the relation

 $h_{\text{inspiral}} = -(h_{+} - ih_{\times}) = {}_{-2}Y_{22}(\theta, \phi)h_{22}(t) + {}_{-2}Y_{2-2}(\theta, \phi)h_{2-2}(t)$

• where the angular functions are the spin weight -2 spherical harmonics. This relation reproduces the standard quadrupole approximation

$$h_{\text{inspiral}} = \frac{-4\mu}{D} \left(M\Omega \right)^{2/3} \left(\frac{1 + \cos^2(\theta)}{2} \cos(2\phi) - i\cos(\theta)\sin(2\phi) \right)$$

- To model the merger part we use the Effective One Body approach (EOB) following Buonanno, et al. 2007.
- The various coefficients of the metric tensor

$$ds_{\rm eff}^2 = -A(r)dt^2 + B(r)dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

are 3PN Padé approximants. The effective and real Hamiltonians to be considered are

$$H_{\text{eff}} = \mu_{\sqrt{A(r)}} \left(1 + \frac{p_{\phi}^2}{r^2} + \frac{p_r^2}{B(r)} + z_3 \frac{p_r^4}{r} \right) \qquad z_3 = 2(4 - 3\eta)\eta$$
$$H_{\text{real}} = M_{\sqrt{1 + 2\eta}} \left(\frac{H_{\text{eff}} - \mu}{\mu} \right)$$

- The new radial coordinate and gravitational phase for the merger are computed using the Hamilton equations.
- Assume CO follows a geodesic with fixed angular momentum and energy during plunge, i.e.,

$$\frac{d\mathbf{r}}{dt} = a_1 A(r) \left(\frac{a_2}{B(r)} + \frac{a_3}{r^2} \right), \quad \omega_{\text{plunge}} = a_4 \frac{A(r)}{r^2}$$

- The a_i 's depend on the angular and radial momenta, and the real and effective Hamiltonians evaluated at the LSO.
- Use these expressions to build the waveform

• Dominant modes taken into account are

$$h_{22}^{\text{merger}} = -8\sqrt{\frac{\pi}{5}} \frac{\mu}{D} (r_{\omega}\Omega)^2 F_{22}(t) e^{-2i\phi}, \quad h_{2-2} = h_{22}^*$$

where $r_{\omega} = r[\psi(r, p_{\phi})]^{1/3}$ is a modified EOB radius and the complex quantity

$$F_{22}(t) = \hat{H}_{\text{eff}} T_{22} \rho_{22}^2 e^{i\delta_{22}}$$

represents a resummed version of all the PN corrections. Using this conventions the waveform takes the form

$$h_{\text{merger}} =_{-2} Y_{22}(\theta, \phi)_{22}^{\text{merger}} +_{-2} Y_{2-2}(\theta, \phi) h_{2-2}^{\text{merger}}$$

• Merger waveform takes the final form

$$h_{\text{merger}} = -4C\frac{\mu}{D} \left(r_{\omega}\Omega\right)^2 \left(\frac{1+\cos^2\theta}{2}\cos(2\chi) - i\cos\theta\sin(2\chi)\right)$$

with $\chi = \phi(t) - \frac{1}{2}\epsilon(t), F_{22}(t) = Ce^{i\epsilon}$

- Matching inspiral waveform onto merger part is straightforward.
- Attach ringdown (RD) modes when ω_{plunge} reaches its maximum.
- Use consistent approach by including "twin modes" with frequency $\omega'_{lmn} = -\omega_{l-mn}$ and damping time $\tau'_{lmn} = \tau_{l-mn}$.

• Following Berti, et al. 2006, the RD waveform is given by

$$h_{\text{ringdown}} = \frac{M}{D} \sum_{lmn} \{A_{lmn} e^{-i(\omega_{lmn}t + \phi_{lmn})} e^{-t/\tau_{lmn}} S_{lm}(a\omega_{lmn}) + A'_{lmn} e^{i(\omega_{lmn}t + \phi'_{lmn})} e^{-t/\tau_{lmn}} S^*_{lm}(a\omega_{lmn})\}$$

- Superpose the dominant tone l=m=2, n=0, and two overtones n=1,2.
- Use one-parameter fit functions (Buonanno et al., 2007) to compute the mass and spin of the final black hole

$$M_f/M = 1 + \left(\sqrt{8/9} - 1\right)\eta - 0.498\eta^2, \quad a_f/M_f = \sqrt{12}\eta - 2.90\eta^2$$

- Using data from Berti, et al, 2006, build interpolating functions to obtain the various frequencies and decay times
- Compute the spin-weight -2 spheroidal harmonics using the expansion (Poisson, 1995)

$$-_{2}S_{lm}(a\omega_{lmn}) = -_{2}Y_{lm} + a\omega_{lmn}S_{lm}^{(1)}(a\omega_{lmn})$$

$$S_{lm}^{(1)}(a\omega_{lmn}) = \sum_{l'}c_{lm-2}^{l'}Y_{l'm}$$

- Plug these expansions into the waveform and split it into plus and cross polarizations.
- Match plus and cross RD polarizations onto their merger counterparts (24 constants in total!!).

• Compute the various constants evaluating the waveforms and the appropriate high order derivatives at three points

 $t_{\text{light ring}} - dt$, $t_{\text{light ring}}$, $t_{\text{light ring}} + dt$

- Compute overtones' constants at later times and use them as seeds to obtain leading tone's constants at $t_{\text{light ring}} dt$.
- Add the SNRs from the three waveform phases in quadrature and test convergence of Fisher Matrix estimates.

Results

 Contribution to the SNR by inspiral (I), inspiral plus merger (I + M) and inspiral plus merger plus ringdown (A) for four different configurations.

η	M/M_{\odot}	Ι	I + M	A
0.014	IOO	18.98	26.99	31.77
0.083	IOO	52.58	96.49	183.31
0.003	500	3.20	17.92	18.01
0.019	500	8.62	73.69	74.88

Results

• Fisher matrix estimates

	Mass ratio/IMBH mass					
Parameter	0.014/100	0.083/100	0.0028/500	0.019/500		
Δm	0.00036	0.0036	0.0014	0.0048		
ΔM	0.00037	0.0035	0.000180	0.00063		
$\Delta \phi_0$	0.0068	0.066	0.0018	0.0059		
$\Delta heta_s$	0.044	0.088	0.056	0.056		
$\Delta \phi_s$	0.020	0.16	0.26	0.26		
$\Delta heta_k$	0.12	0.12	0.38	0.29		
$\Delta \phi_k$	0.20	0.19	0.47	0.34		
ΔD	0.088	0.0086	0.42	0.074		

Summary and future work

- We have built a waveform model for IMRIs which includes inspiral, merger and ringdown.
- The model allows us to compute parameter accuracy estimates for a network of ETs. We estimate mass precision up to 0.05%, 0.3 radians for the source's location and 10% for the distance to the source.
- Next step obtain robust results using Monte Carlo simulations and compare SNRs etc. to other models available in the literature, i.e., Ajith, 2009, and EOB-numerical relativity.
- Extend this model for spinning black holes and perform similar analysis.