

Thermal noise reduction: impact on the infrastructure

Fulvio Ricci

Erice Octobet 2009

Design of the cooling system

The Pulse Tube Cryo generator

An example: CryoMec PT 410 → 0.83W at 4 K and 38W at 45 K;

A typical helium compressor

Compressor unit, RW 6000-1 891 44
Operating pressure in the highpressure circuit@50 Hz, 22±1 bar
Electrical power drawn at 50 Hz
kW 6.1 – 6.9
Coolant consumption at 25°C inlet
temperature 5 l/min
Max. coolant flow rate 10 l/min

Dimensions 450x445x445 mm Weight kg 105

Noise level @1 m dB(A) 78 - 80

For a silent model as **COOLPAK 6000/6200 MD** (less powerful) Noise level @1 m distance 53 dB(A)

High pressure helium flexible lines: maximum length provided 30 m

Pump frequency 1 Hz - Vibration transmitted along the tube

Active cancellation is needed

Standard scale for the Sound Noise

Source:

Handbook of Noise Measurement, General Radio Company

dBA	Source	dBA	Source
140 Engine exhaust – no muffler @ 1 m 130 50 HPSiren @ 30 m. 120 Jet takeoff @ 60 m 110 Riveting machine 100 Large Diesel Engine @ 3 m		60 Large store or office 50 Average residence 40 Soft whisper 30 Quiet office on Saturday 20 Mouse walking across a wood floor	
90 Train @ 6 m 80 Inside a sports car @ 100 km/h 70 Inside a luxury car @ 100 km/h		0 Threshold of hearing for a young person (2×10 ⁻⁵ Pa) or a mosquito flying @ 3 m	

Filter applied to get dBA

The standard mounting

Insulation material : Foam Laminate (SA25FF/B/6)

Effective airborne absorption for small cavities and enclosures.

Toward a reference solution?

- Mirror material: silicon
- Mirror dimensions:
 - 45 50 cm diameter
 - 30 cm thickness
 - 110 -120 kg mass
- Payload total mass ~ 3 4 x mirror mass

A guess about the surface needed for hosting a test mass

For each test mass we need 2 towers and 2 cryostats:

Assuming a mirror of t~300 mm $~\phi^{\sim}$ 450 mm (400 is available already but soon we can hope in silicon slabs of 450 mm in diameter) m~ 110kg

The test mass is hosted in an inner cylindrical vacuum chamber $\phi^{\sim} 1.5 \text{ m}$ h $^{\sim} 4 \text{ m}$ external crystat $\phi^{\sim} 2 \text{ m}$ h $^{\sim} 4.5 \text{ m}$

Cold element tower which includes filters ϕ^{\sim} 1.5 m h $^{\sim}$ 4.5 m

How many compressors for each tower?

- Vacuum tube: 4 K thermal shield (φ~1.2 m, L_{N2}~ 100 m, but we need also a second shorter shield at 4 K) using 75 layers of super insulation (s.u.)
 Heat load @77K ~ 600 W → 10 compressors (including redundancy)
- Lower section of the Tower: 4 K thermal shield (φ ~2 m , L~ 4 m + 25 layers s.u.) + 77 K thermal shield (φ ~2.05 m , L~ 4.05 m + 75 lay s.u.)
 Heat load @ 77K ~ 60 W →
 Heat load @ 4K ~ 2 W →
 (including redundancy)

 L~ 4.05 m + 75 lay s.u.)
 B 2 compressors
- For the auxiliary tower we have to add 2 more compressors

Cryogenic infrastructure requirement: auxiliary caverns for a full PT solution

About cryo strategy

- Larger mirror → larger vacuum tube → longer cryo traps for reducing the radiation input
- 4 K Cryo traps are needed
- Cryo traps 50 /100 m long → large total thermal input → use of the cryofluids?

 A hybrid solution should be studied also. The advantage is to have a system with a null evaporation rate.

The Helium II approach

- ➤ Very high thermal conductivity
- ➤ Very high specific heat
- Extremely low viscosity (Andronikashvili's effect)
- ➤ Evaporation without bubbles

- The most quiet and reliable approach for producing He II at atmospheric pressure
- ➤ Massive use of the technique @ LHC

Output of GW antenna EXPLORER during the λ transition

The He II approach: the Claudet bath principle

Cryogenic Infracture Requirements The superfluid Helium solution

Upper part suspension

-see the slides of Stefano Braccini and Franco Frasconi presented during the WG2 session
- If the low frequency cut-off of ET is 4 Hz the present VIRGO SA is already compliant with the ET specifications for the seismic noise attenuation
- In the case we assume a low frequency cut-off of ET is 1 Hz......

- 1) Inverted Pend. 40 mHz
- 2) 50 m tall mechanical filter chain

Assuming a

-seis. noise under. @1Hz 10⁻⁹ m (Hz)^{-1/2},

- TF opt. @1Hz

 $h(1Hz) \sim 2.6 \ 10^{-22} \ (Hz)^{-1/2}$

No conclusion at present! Further studies are needed

PT solution

- Increase the active damping efficiency
- Increase the length of the high pressure lines
- Increase the refrigeration power

Superfluid helium solution

- evaluation of the noise impact of the cryogenic facility
- thermo acoustic insulation of the long transfer lines

Suspension

 effort to reduce the length of the SA chain in the case of 1 Hz freq. cut off