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Why we need finite element simulations for GGN

FEA provide solutions to the wave equation

Solutions to the wave equation constitute various wave types
* Surface: Rayleigh, Love waves

* Body: Pressure, Shear, Head waves

Allows to simulate realistic geologies

e Multi-layer systems

e Faults / reflections / scattering centers

Can be used to test and verify subtraction algorithms




Solutions to the wave equation include surface and
body waves

Surface: Rayleigh wave Surface: Love wave
Elliptical rolling motion Horizontal motion, fastest surface wave

Body: primary wave Body: secondary wave
Compressional motion Transverse motion




Finite element solutions for all wave fields

Surface waves

—Rayleigh |

Body waves
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= Reaction to vertical point oscillation

- Two layer geology
= Wave attenuation has two components

- Geometrical (expansion of wave fronts) ~ "
— Rayleigh, n=-1/2
— Body waves at depth, n=-1

- Material (damping)




Finite element solutions for all wave fields
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= Reaction to vertical point oscillation
- Two layer geology

= Wave attenuation has two components A,
Ay = exp{—7fr/cQ} then 1/Q = ac/mf =256f/f

- Geometrical (expansion of wave fronts) ~ " Vr/ro

— Rayleigh, n=-1/2 in which ¢ = velocity ,

— Body waves at depth, n=-1 f = frequency

: . a = attenuation/!
- Material (damping) 6f = half width at .707 response

Example: sandstone, a = 3.5 x 108 f sec/cm, a plane wave disturbance at
1 Hz would be attenuated over 10 km by less than 4%




FE models are good approximations of wave equation
solutions - can be compared to analytical results




FE models are good approximations of wave equation
solutions - can be compared to analytical results

* Rayleigh waves

®* cR - Rayleigh wave speed

* cP/cS - P/S-wave speed




FE models are good approximations of wave equation
solutions - can be compared to analytical results

* Rayleigh waves Maximum wave displacement in medium

®* cR - Rayleigh wave speed
* cP/cS - P/S-wave speed
* Geometrical damping

* Body waves in medium
~1/r

e Surface waves ~ 1/rt(r)
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Analytical results are used to verify FE GGN

calculations

Homogenous half space as described by
Saulson (1984) and Thorne and Hughes (1998)

Integral solution:

a r.pwave, max

o In
27Gpuge ©

Plane excited on one side with
u(t) =uycos(wt-kx)
Up,=0.1m

Many planes stacked on top of each other to
create a block

Like Saulson and Thorne and Hughes an
integral lower bound is used (r. .. ) of M4

Ground properties:
p=1800 kg/m3
v=0.33 cp =440 m/s

n — n ,)) cos(—kx)drdyd:=
T2 4yl 4 2%




FE calculations show good correspondence with
analytical results

= GGN spectra for surface detectors agree with
Saulson SaUIson’ Ce”a and Hughes

Hughes max | - For1—-10 Hz: 1 nm/rtHz

Hughes min

megal i = Care should be taken regarding element size

FEA results

Newtonian noise comparison (Surface detector)

= Deviation from integral due to integral cut-off, r

(O [m/sqrt(Hz)]

Beccaria et al., Class. Quant.
Grav. 15:3339-3362 (1998)

S.A.Hughes, K.S.Thorne, Phys.
Rev. D58:122002 (1998)
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FE calculations show good correspondence with
analytical results

= GGN spectra for surface detectors agree with
Saulson, Cella and Hughes

Newtonian noise comparison (Surface detector)

Saulson

Hughes max | - For1—-10 Hz: 1 nm/rtHz

Hughes min ||
Integral

megal 11 = Care should be taken regarding element size
= Deviation from integral due to integral cut-off, r
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Reproduction of surface wave calculations - Cella

Analytical results by G. Cella
The 58th Fujihara Seminar
(May 2009)

Assumptions:

« Cp = 1000 m/s (lower is better)
« Cp/Cg = 0.5 (lower is worse)

« Surface modes and transverse

mode only
* V/H ratio = 72 (lower is better) —_ Surface

Equivalent strain noise amplitude (Hz-1/2)

Feasible

« Can we do better?
especially in the low frequency
region

* \/olume waves!

GGN reduction factor
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Reproduction of surface wave calculations - Cella

Analytical results by G. Cella
The 58th Fujihara Seminar
(May 2009)

Assumptions:

« Cp = 1000 m/s (lower is better)
« Cp/Cg = 0.5 (lower is worse)

« Surface modes and transverse

mode only
* V/H ratio = 72 (lower is better) — Surface

Equivalent strain noise amplitude (Hz-1/2)

Feasible

« Can we do better?
especially in the low frequency
region

* VVolume waves!
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Time=4 Boundary: Total displacement [m] Max: 0.141

Reproduction of surface
wave calculations - Cella

Double plane wave excitation of surface waves
Soil characteristics to match Cella’s
calculations

Material properties: Dimensions:
E=1.22x10° 3000x3000x10 m
v=0.33

p = 1800 kg/m3 Element size:
c, = 1000 m 21.4x21.4x10 m

Cs /c, = 0.5

= Reasonable agreement with Cella
— Limited model size
— Deviations at higher frequencies/depths
= Geometric suppression increases with
- Lower velocities
— Domination by surface waves
= More realistic model
- Surface wave amplitudes decay exponentially with ;
depth o e

— Include compression waves - 200m
— Include incoherent sources T

ti

Wave amplitude reduction fac

Frequency [Hz]




Time=4 Boundary: Total displacement [m] Max: 0.141

Reproduction of surface
wave calculations - Cella

Double plane wave excitation of surface waves
Soil characteristics to match Cella’s
calculations
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ET GGN requirements

* A reduction factor of 50 is required compared to 5 nm/rtHz
o Surface site with 0.1 nm/rtHz is unrealistic
* Underground: Surface wave averaging may provide significant reduction...

* Cultural noise (pumps / people / traffic) must be minimised

* |nvestigate effects of cultural noise on gravity gradients




Impulse excitations are used to simulate cultural noise
events

Acceleration [m/sz]
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Impulse excitations are used to

events

Time=0.06
Boundary: Total displacement [m]
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Impulse excitations are used to simulate cultural noise
events

Time=0.06
Boundary: Total displacement [m]

, Rayleigh wave arrives
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Impulse excitations are used to simulate cultural noise
events

Time=0.06
Boundary: Total displacement [m]

, Rayleigh wave arrives
at sunface detector
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Harmonic excitation of a homogenous medium of Clay
or Granite

Clay: Granite:

Ap =800 m Ap = 2200 m

As =462 m As = 1270 m

p = 2000 kg/m?3 p = 2500 kg/m?3
v =10.25 v =0.25




Harmonic excitation of a homogenous medium of Clay
or Granite

Time=0.06
Boundary: Total displacement [m]
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Clay: Granite:

Ap =800 m Ap = 2200 m

As =462 m As = 1270 m

p = 2000 kg/m?3 p = 2500 kg/m?3
v =10.25 v =0.25




Harmonic excitation of a homogenous medium of Clay
or Granite

Time=0.06
Boundary: Total displacement [m)] GGN at depth / GGN at surface

| Clay 1Hz FEA/Fit A ——
~ Clay 4Hz FEA/Fit O - - - -

GGN reduction factor

Clay: Granite:

Ap =800 m Ap = 2200 m
As =462 m As = 1270 m

p = 2000 kg/m?3 p = 2500 kg/m?3
v =10.25 v =0.25




Harmonic excitation of a homogenous medium of Clay
or Granite

Time=0.06
Boundary: Total displacement [m)] GGN at depth / GGN at surface

| Clay 1Hz FEA/Fit A ——
~ Clay 4Hz FEA/Fit O - - - -

GGN reduction factor

Clay: Granite:

Ap = 800 m Ap =2200 m
As = 462 m As = 1270 m

p = 2000 kg/m? p = 2500 kg/m?
v =10.25 v =10.25

Clay and granite show similar properties
when normalised to same force and Ap

12




Multi layer geologies provide higher reductions factors
by confining energy in top layers
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- Top layer: Clay 200 m thick
= Bottom layer: Granite




Double layer geologies provide higher reductions
factors

GGN at depth / GGN at surface
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= Bottom layer: Granite




Double layer geologies provide higher reductions

factors

1000 2000

Top layer: Clay 200 m thick
Bottom layer: Granite
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In this example reduction factor increases
to ~10 without having to dig deeper

Other ground properties possible to
increase this even further

GGN at depth / GGN at surface




Ongoing research
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Homestake network - hard rock
Realmonte - salt
Future additional sites




Conclusions

* ET requirements demand underground site
* FEA modeling of seismic wave fields
* Good agreement with analytical solutions

* |nvestigate

e Various geologies and excitations

e GGN subtraction schemes







Time=0.06
Boundary: Total displacement [m]
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Time=0.06
Boundary: Total displacement [m]
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Gravity gradient has a direct coupling to the ITF
mirrors

Seismic noise suppression
- Development of superattenuators
Gravity gradient noise

— Cannot be shielded

- Network of seismometers and development
of data correction algorithms

ET dummy curve, file=ET_sthild_10.m

Figure: M.Lorenzini
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Multi layer geologies provide higher reductions factors
by confining energy in top layers
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