STATUS OF THE ET-PROJECT

Harald Lück

THE 3RD GENERATION = **ET** = GRAVITATIONAL WAVE ASTRONOMY

ET EINSTEIN TELESCOPE

Start of the project

- Preparations towards a European Design study already started years ago within the ILIAS project where we had a networking group on future gravitational wave detectors.
- Name finding was a difficult procedure ③
- Submitted proposal on April 30th 2007. Start was foreseen for Jan. 2008
- Start of DS remained unclear for a long time and was postponed to May 2008.
- In Sept. 2008 funding finally became available (start backdated to May)

1st annual ET Meeting, Cascina, Nov 2008

2nd annual ET Meeting Erice, Oct. 2009

3rd annual ET Meeting Budapest, Nov. 2010

Let's again take a picture of the whole team In the coffee break @ 16:00 ? here in this auditorium?

@2010 Google - Map data @2019 Basarsoft, AND, Geocentre Consulting, PPWK, Mar

ET: Working groups

ET EINSTEIN TELESCOPE

WG4: Astrophysics Issues

Suspension towers

Cryolinks

Frequency [Hz]

10

WG2: Thermal Noise, Suspension, Cryogenics

WG3: Optical Configuration

Material selection ET EINSTEIN TELESCOPE

Result: Baseline Conceptual Design

- Single Site Geometry (mostly political reasons)
- Underground 100 200 m
- 30km overall tunnel length
- Triangular Topology, tunnels doubly used
- Dual Recycled FP Michelson
- In the second second
- Xylophone configuration: cryo low power, room temp. high power

Xylophone: hot & cool

		Parameter	ET- High Frequency	ET – Low Frequency
± 0 ^{−22}		Arm length	10 km	10 km
10 [(ZH)1/20 10 ⁻²³		Input power	500 W	3 W
		Arm Power	3 MW	18 kW
		Temperature	290 K	10 K ?
		Mirror material	Fused Silica	Silicon
10 ⁻²⁴		Mirror diameter x thickness	620 mm x 300 mm	620 x 300mm (or 450 x 600mm)
		Mirror masses	200 kg	210 kg
		Laser Wavelength	1064 nm	1550 nm
		SR- Phase	Tuned	Detuned (0.6 rad)
1	0 ⁰ 10	SR Transmittance	10%	20 %
		Beam shape	LG33	TEM00
EINSTEIN		Beam Radius	72 mm	90 mm
TELES	SCOPE	Suspension	SA 8m?	SA 17 m

E

END STATION

Length ~10 km

NIREF TUNNEL Ø ~5 m

The infrastructure

Schematic view

- Full infrastructure realized
- Initial detector(s) implementation
 - 1 detector (2 ITF)
 - Physics already possible in coincidence with the improved advanced detectors
- Progressive implementation
 - 2 detector (4 ITF)
 - Redundancy and crosscorrelation
- Full implementation
 - 3 detector (6 ITF)
 - Virtual interferometry
 - 2 polarizations reconstruction

Einstein Telescope Xylophone option (ET-C)

Each detector (red, green and blue) consists of two Michelson interferometers. The HF detectors need one filtercavity each, while the LF detectors require 2 filter cavities each due to the use of detuned signal recycling. Number of 'long' suspensions = 21 (ITM, ETM, SRM, BS, PRM of LF-IFOs) of which 12 are crogenic.

> Number of 'normal' suspensions (PRM, BS, BD and FC) = 45 for linerar filtercavities and 54 for triangular filter cavities

> > Beams per tunnel =7

Grn-LF

The Transversal Writing Team -

- consists of researchers of each working group and participant
- is writing the Design Study document
- has got weekly telecon meetings
- has produced a very nice draft of the design study document; now containing 232 pages and still rapidly growing
- is discussing ,transversal' issues, e.g.
 compatibility of vacuum- and optical system.

The Transversal Writing Team -

Harald Lück, Michele Punturo, ET-EB, Stefano Braccini, Carlo Bradaschia, Chris Van Den Broeck, David Rabeling, Franco Frasconi, Paola Puppo, Roberto Passaguieti, Ronny Nawrodt, Sheila Rowan, Stefan Hild, Tania Regimbau, Thomas Dent, Andre Thüring, Badri Krishnan, Daniel Friedrich, Giancarlo Cella, Helge Müller Ebhardt, Janyce Franc, Keiko Kokeyama, Matteo Lorenzini, Peter Wessels, Sofiane Aoudia, Stuart Reid

The Design Study Document

Einstein gravitational wave Telescope conceptual design study

ET-0106A-10

S Aoudia¹, P Amaro-Seoane¹⁰, S Braccini², C Bradaschia^{2,5}, J van den Brand³,
C Van Den Broeck⁴, G Cella², J Colas⁵, K Danzmann¹, T Dent⁶, V Fafone⁸, R Flaminio⁷,
J Franc⁷, F Frasconi², A Freise⁹, D Friedrich¹, E Genin⁵, C Gräf¹,
S Hild¹³, K Kokeyama⁹, B Krishnan¹⁰, M Lorenzini¹¹, H Lück¹,
B Mours¹², H Müller-Ebhardt¹, R Nawrodt¹³, G Parguezt⁵, A Pasqualetti⁵, M Punturo^{14,5},
P Puppo^{15a}, D Rabeling³, T Regimbau¹⁶, S Reid¹⁷,

F Ricci^{15ab}, S Rowan¹⁷, L Santamaría¹⁸ B Sathyaprakash⁶, S Tarabrin¹, A Thüring¹, P Weßels¹⁹ on behalf of the ET science team

> Issue: 1 Date: November 22, 2010