Fundamental Physics with Einstein Telescope

THE RELEVANCE OF THE LOW FREQUENCY SENSITIVITY

TJONNIE LI

3rd Annual Einstein Telescope Workshop

Introduction

2

- Interferometric detectors are bound by different noise contributions
- Cut-off frequency signifies frequency above which we trust the data to be stationary and gaussian
 - Data below cut-off frequency will be ignored in data analysis
- Research in fundamental physics will depend on detector design and its corresponding cut-off frequency

))						
	Range	Dominant Noise				
	<5Hz	Seismic, gravity gradient noise				
	5Hz-50Hz	Thermal noise (optical suspensions), radiation pressure				
	50Hz-300Hz	Thermal noise (suspended mirrors)				
	>300Hz	Shot noise (quantum noise)				

Design Sensitivities

• ET-B

- Single 3rd generation broadband detector
- ET-C: Xylophone
 - Two individual detectors
 - Cryogenic low power, low frequency
 - Room-temperature high power, high frequency

INFER CHARACTERISTICS OF THE UNIVERSE BY OBSERVING COALESCING BINARY NEUTRON STARS

4

3rd Annual Einstein Telescope Workshop

Cosmology - Concept

- Infer characteristics of the universe
 - GW signal carries information about the content of the universe between the source and the observer
 - Information encoded in the **luminosity distance**

$$d_L = d_L(z; \Omega_M, \Omega_\Lambda, \Omega_k, w_0, w_a)$$

- Measure set of cosmological parameters
 - $\circ \Omega_i$ content densities
 - $\circ w_i$ dark energy equation of state

3rd Annual Einstein Telescope Workshop

Trade Study – Compare ETB/ETC

(7)									
Model	Ω_M	Ω_{DE}	Ω_k	w_0	w_1				
	1 015	1.005	1.040	1.050	1.057				
$\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$	1.210 1.209	1.005 1.207	1.049	1.000	1.057				
$\Omega_M, \Omega_DE, \Omega_k$	1.290 1 104	1.207 1.006	1.220	— 1 186					
$\Omega_M, \Omega_{DE}, w_0, w_1$	1.104 1 162	1.090 1.162	_	1.100 1 164	1.207				
$\Omega_M, \Omega_{DE}, \omega_0$	1.102 1.178	1.102 1.178	_	-	_				
w_0, w_1	_	_	_	1.158	1.183				
w_0	_	_	_	1.151	_				
Average relative improvement:	-15.11%	,)							

- Ratio of **root mean square errors** (ET-C/ET-B)
- Lower cut-off frequency **10Hz**
- ETB performs on average ~15% better

Going Beyond 10Hz Cut-off

						- ((8)) -			
Model		Ω_M	Ω_{DE}	Ω_k	w_0	w_1			
$\Omega_M, \Omega_{DE}, \Omega_k, w_0, w_1$		1.215	1.005	1.049	1.050	1.057			
$\Omega_M,\Omega_{DE},\Omega_k$	1.298	1.207	1.228	_	_				
$\Omega_M, \Omega_{DE}, w_0, w_1$		1.104	1.096	_	1.186	1.207			
Ω_M,Ω_{DE},w_0		1.162	1.162	_	1.164	_			
Ω_M,Ω_{DE}		1.178	1.178	_	—	—			
w_0, w_1	10Hz	-	_	_	1.158	1.183			
w_0	L		_	—	1.151	-			
Average relative improvement: (-15.11%)									
Model		Ω_M	Ω_{DE}	Ω_k	w_0	w_1			
$\Omega_M, \Omega_{DE}, \Omega_k, w_0,$	w_1	0.813	0.992	0.967	0.923	0.989			
$egin{array}{llllllllllllllllllllllllllllllllllll$		0.777	0.826	0.810	_	_			
		0.877	0.884	_	0.828	0.833			
		0.815	0.815	_	0.830	_			
Ω_M, Ω_{DE}	Ω_M, Ω_{DE}		0.849	_	_	_			
w_0, w_1	FH7	_	_	_	0.858	0.842			
w_0	911 7		_	_	0.863	_			
Average relative in	nprovement:	13.75%							
Model		Ω_M	Ω_{DE}	Ω_k	w_0	 w1			
		171		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
$\Omega_M, \Omega_{DE}, \Omega_k, w_0,$	Ω_M Ω_{DE} Ω_k w_0 w_1		0.993	0.967	0.914	0.969			
$\Omega_{M}, \Omega_{DE}, \Omega_{h}, \omega_{0}, \omega_{1}$		0.765	0.816	0.799	_	_			
$\Omega_M, \Omega_{DE}, w_0, w_1$		0.872	0.879	_	0.821	0.820			
$\Omega_M, \Omega_{DE}, w_0$		0.804	0.804	_	0.819	_			
Ω_M, Ω_{DE}		0.838	0.838	_	_	_			
\mathcal{W}_{0} , \mathcal{W}_{1}	1U7	_	_	_	0.850	0.834			
w_0, w_1	IUZ		_	_	0.854	_			
Average relative improvement: 14.66%									
Average relative improvement. 14.00/0									

- Compare parameterestimation for varyingcut-off frequencies
 - 10Hz not sufficient to probe full extent of ET-C design
 - ET-C becomes beneficial when cut-off is <~5Hz

Absolute errors improved by ~20%

- Advantage of ETC in the low frequencies
- 10Hz lower cut-off, ETB has higher SNR due to better sensitivities at >30Hz
- Parameter estimation largely dependent on SNR

Need to push lower cut-off frequency below 10Hz to increase **parameter estimation**

Detectable Sources

- SNR also influences the number of detectable sources
- SNR cut-off set to 8
- ETB has more detectable sources for 10Hz cut-off

Need to push lower cut-off frequency below 10Hz to increase **detectable sources**

Testing General Relativity

TESTING GENERAL RELATIVITY BY CHECKING CONSISTENCY BETWEEN POST-NEWTONIAN PHASE COEFFICIENTS

11

3rd Annual Einstein Telescope Workshop

Post-Newtonian Formalism

- General two body problem in relativity cannot be solved analytically
- Approximate waveforms by expanding equations in powers of v/c

• Where v is the characteristic velocity of the orbit

• General form of Post-Newtonian (PN) waveforms $h(t;\vec{\theta}) = \sum_{n=1}^{N_H} \sum_{k=0}^{K} A_{nk}(t) \cos(n\Phi(t) + \phi_{nk})$

• Phase evolution represented in time / frequency (SPA) domain

$$\Phi(t) = \phi_c - \sum_{l=0}^{L} \phi_l (t_c - t)^{(5-l)/8}$$

$$\Psi(f) = 2\pi f t_c - \phi_c + \sum_{l=0}^{L} \psi_l f^{(l-5)/3}$$

Testing General Relativity - Concept

Arun et al. 2006

• Assume spinless systems

Phase coefficients only depend on component masses
Only two phase coefficients independent

• Measure ϕ_1, ϕ_2, ϕ_T independently • Check for **consistency** between PN phase coefficients

3rd Annual Einstein Telescope Workshop

22 November 2010

3rd Annual Einstein Telescope Workshoj

Trade Study – Compare ETB/ETC

- ETC outperforms ETB for higher masses
 - F_{lso} decreases with mass
- Difference as large as 40%
- Transition around 70-90 total mass (solar mass)
- Best Performance depends on the sources of interest

Beyond 10Hz Lower Cut-off Frequency

- Compare results for 10Hz and 5Hz
- Errors are factor ~2 smaller for 5Hz cut-off

Need to push lower cut-off frequency below 10Hz obtain better **bounds** on General Relativity

Bounding Graviton Mass

CONSTRAINING THE MASS OF THE GRAVITON BY LOOKING PHASE SHIFTS DUE TO WAVELENGTH DEPENDENT ARRIVAL TIMES

18

3rd Annual Einstein Telescope Workshop

Bounding Graviton Mass - Concept

19

- If a mass is associated with the propagation of gravitational waves, its speed will depend on wavelength $v_g \approx 1 (\lambda/\lambda_g)^2$ where $\lambda \ll \lambda_g$
 - Where λ_g is the Compton wavelength of the graviton
 - A distant observer, at distance D, will see shifted time of arrival depending on wavelength $\Delta t \sim D(\lambda/\lambda_g)^2$
 - In the frequency domain, the phase of a waveform is altered with an additional shift of

$$\Delta \psi_k(f) = -\frac{\pi k^2 D}{4 f_e \lambda_g^2}$$

• Translate into a bound on λ_{g}

Up to an **order of magnitude** improvement on the bound of the graviton mass by having a lowering the cut-off to 1Hz

Benefits of sub 10Hz cut-off

- Increased parameter estimation
 - Gain more knowledge per detected source
- Increased number of detectable sources
 - Acquire more confidence in detected sources and statements derived from their detections
- Increased mass range
 - Probe additional sources otherwise not detected
- Possible unknown sources
 - o e.g. Intermediate Mass Black Holes

Backup Slides

23

<u> 3rd Annual Einstein Telescope Workshop</u>