# **Thermo-refractive noise for E.T.**

J. Franc J. Degallaix R. Flaminio

3<sup>rd</sup> Einstein Telescope Annual Workshop

November 2010

### The thermorefractive noise

#### **Quick history:**

- First derived by Braginsky<sup>1</sup>
- Then confirmed (and extended) by Levin<sup>2</sup>

#### Origin:

- Random fluctuations of temperature in the substrate
- Induced phase fluctuations for the transmitted beam



#### **Parameters and formula**

How the PSD phase noise looks like ?

 $S_{\varphi}(\omega) = rac{4eta^2 k^2 l k_B T^2 \kappa}{\pi \left( \left( C 
ho 
ight)^2 r_0^4 \omega^2 
ight)}$ 

with:

| eta              |                 | thermo-optic coefficient    |
|------------------|-----------------|-----------------------------|
| $\boldsymbol{k}$ | $=2\pi/\lambda$ | the wave number             |
| $\kappa$         |                 | the thermal conductivity    |
| l                |                 | the length of the substrate |
| T                |                 | the temperature             |
| C                |                 | the specific heat           |
| ρ                |                 | the density                 |
| $r_0$            |                 | the beam radius             |
| ω                |                 | the angular frequency       |

(adiabatic approximation)

material dependent ?

## Silicon vs sapphire at 10 K



4



 $\begin{array}{ll} \sqrt{S_{\varphi}(\omega)} & \text{amplitude thermo refractive phase noise} \\ + & \\ \phi_h(\omega) & \text{phase change due} \\ \text{to GW signal} & \phi_h(f) = \frac{4\pi}{\lambda} \frac{2F}{\pi} \frac{1}{\sqrt{1 + (f/f_c)^2)}} hL \end{array}$ 

To be able to measure the GW signal, we must have:

$$\phi_h(\omega) \gg \sqrt{S_{\varphi}(\omega)}$$

### **Related to h**





6

## **Related to h**



7

# **Changing the temperature**

#### For silicon mirrors



#### The thermo-optic coefficient (also known as dn/dT)

One of the least known parameter! because:

- it is for cryogenic temperature (10K)
- it is extremely small
- it is wavelength dependent

For sapphire, use an upper limit:  $\beta = 9 \times 10^{-8} \ [1/K]$ 

measured for sapphire LCGT research<sup>1</sup>

Coefficient value critical since the noise may be close to be limiting.

#### Measured up to 30K<sup>1</sup>



Coefficient value critical since the noise may be close to be limiting.

#### A possible extrapolation



Coefficient value critical since the noise may be close to be limiting.

#### Another extrapolation:



Raw data from the authors of the publication<sup>1</sup>:



#### Accuracy of measurement: 0.0001

- Sweet spot around 25 K (dn/dT = 0)
- dn/dT higher than expected at 10 K

<sup>1</sup> Proc. SPIE (2006) Vol. 6273, 62732J <sup>13</sup>

## **Other thermal noise**



## Conclusion

- A new addition to ET thermal noise inventory: the transmissive thermo-refractive noise
- Noise to be monitored and will fluctuate in the coming years
- Also concerns the beam splitter