Einstein Telescope: The Interferometer Design

Andreas Freise for the ET WP3 working group

24.11.2010, 3nd general ET workshop, Budapest

Overview

- ET in a global network
- Why a triangle?
- Why a Michelson?
- New technologies?
- Optical layout
- Sensitivity studies!

A Freise, 3rd general ET workshop

24/11/2010

Assignment for WP3

 Target: Produce a reference design (no technical design) for a broadband interferometer with a tenfold sensitivity improvement versus the current state of the art (advanced detectors).

Structure of the WP3 tasks:

- Investigate the geometry of the ET detector (footprint of the entire detector, as defined by the optical systems)
- Select a topology of the individual main interferometer (based on quantum noise reduction scheme)
 - Define the details of the interferometer configuration required for the design of the infrastructure, suspension and vacuum systems

Impact of possible global networks on the ET interferometer design

Functioning of ET in various conceivable scenarios of a global network:

- advanced detectors (Advanced LIGO, Advanced Virgo, LGCT, LIGO South, ...)
- advanced detectors plus third generation dectors in USA, Japan, ...
- third generation detectors

Conclusion: different performance in different constellation, however, no influence on the optical design of the single site!

Why the triangle?

Red-

5

Wednesday, 24 November 2010

A Freise, 3rd general ET workshop 24/11/2010

Blu-

Grn-LF

Grn-H

10km

An old idea...

A detailed analysis of the how the triangle makes efficient use of `tunnel' length was presented by Ruediger in 1985.

[W.Winkler et al.: Plans for a large gravitational wave antenna in Germany. Fourth Marcel Grossmann Meeting on General Relativity, **1986**, 621-630]

To my knowledge, no other early documentation on this idea exist! This design was reviewed for ET.

[A. Freise et. al.: Triple Michelson interferometer for a third-generation gravitational wave detector, Classical and Quantum Gravity, 2009, 26]

A Freise, 3rd general ET workshop 24/11/2010

Multiple Interferometers

- a. The L-shape provides the best form for a differential measurement of quadrupole waves
- b. Two parallel interferometers provide redundancy (nullstream creation, operation during maintenance and upgrades)
- c. Two interferometers under 45 degrees can resolve both polarisations

A Freise, 3rd general ET workshop 24/11/2010

Multiple Interferometers

$$h(t) = F_+(t)h_+(t) + F_{\times}(t)h_{\times}(t)$$
 [P Jaranowski et al, Phys Rev D 58 1998]

Both solutions have an integrated tunnel length of 30 km, they can resolve both GW polarisations, feature redundant interferometers and have equivalent sensitivity.

The triangle reduces the number of end stations and the enclosed area!

Large Infrastructure

The Triangle!

Wednesday, 24 November 2010

OI

SEVENTS PRAMEWOR

Interferometer Topology: Defined by Quantum Noise Reduction

Several QNR topologies seem feasible:

- Micheslon with SR, variational output, squeezing
- Sagnac or Mach Zehnder Interferometer with SR, ...
- Optical bars, optical levers, double optical spring, ...

All can be build using the L-shape form factor

A Freise, 3rd general ET workshop 24/11/2010

The Xylophone

Low power (no thermal effects), cooled, long suspensions

High power, squeezing, LG modes, room temperature, `normal' suspensions

[S Hild et al: A xylophone configuration for a third-generation gravitational wave detector, Classical and Quantum Gravity, **2010**, 27]

A Freise, 3rd general ET workshop

24/11/2010

Summary so far

- Broadband detector
- Three L-shaped detectors in a triangle
- Each detector consists of two interferometers

• Now for some details....

Technology reviews

- Technology reviews documented in internal notes and papers:
 - Quantum noise reduction
 - High power lasers
 - Diffractive interferometers
 - Squeezed light
 - Displacement noise free interferometry
 - Laguerre-Gauss modes and non-Gaussian beams
 - Waveguide coatings
 - Etalon mirrors (Khalili cavities)

[S. Hild GWADW 2008, S. Tarabrin ET-024-09]

A Freise, 3rd general ET workshop 24/11/2010

Wednesday, 24 November 2010

15

Diffractive Interferometry

Alignment limits from translational phase noise

$$\Delta \gamma < 9 \cdot 10^{-24} \, \text{rad} \, \left(\frac{h}{10^{-23}}\right) \left(\frac{4 \, \text{km}}{L}\right) \left(\frac{\cos(\alpha)}{\cos(30^\circ)}\right) \left(\frac{7.4 \, \text{km}}{R_C}\right) \left(\frac{d}{\lambda}\right)$$

16

A Freise, 3rd general ET workshop 24/11/2010

Wide beams: non-Gausssian or Laguerre-Gauss

- Wide beams can reduce thermal noise
- Under consideraration: non-Gaussian beams or Laguerre-Gauss modes
- To be tested: do these beam shapes work in highprecision interferometry?

FER AD ADDA

Laguerre Gauss modes

TN comparison for Adv.Virgo

Chelkowski et al. PRD 79 (2009) 122002

HG00:
$$S_x(f) = \frac{4k_BT}{\pi f} \frac{1}{Q} \delta_C \frac{(1+\sigma)(1-2\sigma^2)}{\pi Y w^2}$$

LGnm: $S_x(f) = \frac{4k_BT}{\pi f} \frac{1}{Q} \delta_C \frac{(1+\sigma)(1-2\sigma^2)}{\pi Y w^2} \cdot \beta_n^m$
J.Y.Vinet, Living Reviews in Relativity, 12 (2009)

Wednesday, 24 November 2010

A Freise, 3rd general ET workshop 24/11/2010

LG interferometry, recent results

First experimental results: successfully locked a modecleaner to various higher-order LG modes. Ouput mode purity >99% with no indication of problems due to mode degeneracy.

A Freise, 3rd general ET workshop 24/11/2010

Waveguide Coatings

- Waveguides may provide another way to reduce coating Brownian noise.
- Idea: replacing the dielectric (lossy, thick) multi-layer stack by a (low loss, thin) mono-crystalline silicon nano-structure or a (thin) single layer diffractive coating.

Brückner et al., Optics Letters 33 (2008) 264 - 266 A Freise, 3rd general ET workshop 24/11/2010

Waveguide coatings, recent results

21

A Freise, 3rd general ET workshop 24/11/2010

Squeezed Light

Require I0dB effective squeezing for ET D sensitivity
Good experimental results in GEO 600

A Freise, 3rd general ET workshop 24/11/2010

Quantum Noise Reduction

Wednesday, 24 November 2010

24/11/2010

Sagnac vs. Michelson

RSE

Wednesday, 24 November 2010

A Freise, 3rd general ET workshop 24/11/2010

Sagnac vs. Michelson Example

RSE – tuned SR

SAGNAC-optimised

Wednesday, 24 November 2010

25

A Freise, 3rd general ET workshop 24/11/2010

Topology summary

- Sagnac shows better quantum noise suppression
- However, it has one main practical problem, the ring-cavities in the arms
- All high-precision expertise so far is with the Michelson
- Michelson with RSE/SR and squeezing and filter cavities has been chosen as the reference design

Draft Optical Layout

27

Simple drawing of an optical layout consisting of:

- 3 independent detectors
- 2 interferometers per detector (LF+HF)
- 3 filter cavities per detector
- 21 long suspensions
- 45 short suspensions
- 12 cryogenic mirrors

A Freise, 3rd general ET workshop 24/11/2010

Grn-LF

10km

Beam splitter size

End Station

Red-I

A Freise, 3rd general ET workshop 24/11/2010

Mirror and Beamsplitter Size

Beam geometry on mirror surface depends on incidence angle:

$$\begin{split} I(x,y) &= \frac{2}{\pi \, w_x \, w_y} \exp\left(\frac{-2x^2}{w_x^2}\right) \, \exp\left(\frac{-2y^2}{w_y^2}\right) \\ \text{with} \ w_x > w_y \end{split}$$

The horizontal beam size is $w_x = w_y/\cos(\alpha)$. Thus also mirrors and especially beam splitters must be larger by the same factor.

	BS diam. 45 deg	BS diam. 60 deg
LG33, 1064nm	80 cm	115 cm
LG00, 1550nm	60 cm	84 cm

These are considered to be too large.

24/11/2010

A Freise, 3rd general ET workshop

Wednesday, 24 November 2010

29

Better Beam Sizes

- We want to have small beams in the central interferometer.
- This could be achieved by focusing the beam down between IM and BS

For current design we assume 700m to focus from 8cm down to 1cm.

See Stefan's talk for details!

A Freise, 3rd general ET workshop

24/11/2010

How to fit this into the tunnels?

Early ideas:

Current design:

A Freise, 3rd general ET workshop

24/11/2010

Vertical stacking of interferometer beams

A Freise, 3rd general ET workshop A Freise, 3rd general ET worshop 7 24/11/2010 24/11/2010

Crossed beams in one tube

34

With the beams stackable, the original arrangement for accommodating all beams in a 5m tunnel was finalised

A draft design of the entire vacuum system followed...

A Freise, 3rd general ET workshop

24/11/2010

Sensitivity Studies

- One of the WG3 tasks is to provide official sensitivity curves
- Led by Stefan Hild but a transversal group effort: from sensitivity curve ET A, to ET B, ET C and now ET D.

More Accurate Noise Models...

Used with a New Optical Layout

ET D Sensitivity

42

A Freise, 3rd general ET workshop 24/11/2010

ET D Parameters

Parameter	ET-D-HF	ET-D-LF
Arm length	10 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10 K
Mirror material	Fused Silica	Silicon
Mirror diameter / thickness	62 cm / 30 cm	min 45 cm/ TBD
Mirror masses	$200 \mathrm{kg}$	211 kg
Laser wavelength	1064 nm	$1550\mathrm{nm}$
SR-phase	tuned (0.0)	detuned (0.6)
SR transmittance	10%	20%
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	$1 \times 10 \mathrm{km}$	$2 \times 10 \mathrm{km}$
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	LG ₃₃	TEM_{00}
Beam radius	$7.25\mathrm{cm}$	9 cm
Scatter loss per surface	37.5 ppm	37.5 ppm
Seismic isolation	SA, 8m tall	mod SA, 17 m tall
Seismic (for $f > 1 \mathrm{Hz}$)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} { m m}/f^2$
Gravity gradient subtraction	none	none
Gravity gradient subtraction	UOUG	UOUG

43

A Freise, 3rd general ET workshop

24/11/2010

Wednesday, 24 November 2010

EINSTEIN

ELESCOP

SEVENTS FRAMEWORK

This looks easy enough, I can do it!

Wednesday, 24 November 2010

A Freise, 3rd general ET workshop 24/11/2010

Detector Vacumn

Create a vacuum in the detector's arms and cut down on acoustic But the more air you pump out, the more money you'll have to t in...

Coming soon at:

www.gwoptics.org

A Freise, 3rd general ET workshop 24/11/2010

...end

A Freise, 3rd general ET workshop 24/11/2010

Mirror Sphericity

- AdVirgo example: L = 3000m, beam radius at ITM and ETM =6cm
- ROCs of 1531m are required
- Deviation of only a few ten meters can make cavity instable
- Additional problem: polished spheres are not spherical

A Freise, 3rd general ET workshop 24/11/2010

Minimal beam size

Wednesday, 24 November 2010

A Freise, 3rd general ET workshop 24/11/2010