Surface specifications for ET mirrors: state of the art

<u>Massimo Galimberti</u>, Raffaele Flaminio LMA/CNRS, Lyon m.galimberti@lma.in2p3.fr

ET 3rd annual workshop Budapest, November 24, 2010

Why care about mirror defects at this stage?

Probably no major problems for TEM00: main subjet is reduction of cavity r.-t. losses

 \succ but LG33 is degenerate: defects \rightarrow excitation of unwanted modes

How bad is it?

From last GWADW in May

From last GWADW in May

ET EINSTEIN

ABORATOIRE MATÉRIAUX

AVANCÉS

From last GWADW in May

dark fringe: all possible cavity pairs with **1.0 nm rms** ("Ad-detectors-like")

Madenatoire M. Galimberti - ET 3rd annual meeting, Budapest Nov 24, 2010

What do LG33 beams really do?

More investigations have been done...

Some bad news for people working on LG33:

→ in FFT simulations, convergence tolerance for LG33 must be tigthened with respect to TEM00

new results show that indeed degenerate modes resonate even with very small surface defects

→ bad contrast

Configuration for FFT simulations

- Cavity length L = 10 km
- Test masses diameter: 620 mm
- Finesse = 900
- Wavelength = 1064 nm
- Input mode: LG33
- Spotsizes: 63.4 mm on ITM, 72.5 mm on ETM
- Same *g*-factors as in AdV baseline:

A rough model for surface defects

Surfaces with defects have to be simulated

Defects described via their Power Spectral Density (PSD)

Take a "naive" model $1/f^n$ ($n \sim 2$)

MATÉRIAUX

some nm RMS = what can be obtained today with mechanical polishing

Results with 1/f² surface

rms flatness	Pcirc all modes (W/W)	Pcirc LG33 (W/W)	fraction LG33	contrast
no defects	566.3	566.3	100.0%	0

Results with 1/f² surface

rms flatness	Pcirc all modes (W/W)	Pcirc LG33 (W/W)	fraction LG33	contrast
no defects	566.3	566.3	100.0%	0
1.0 nm - f ⁻²	257.5 ± 91.1	133.0 ± 94.8	46.6 ± 15.9%	68.4 ± 15.3%
	_			<u>`</u>

More realistic surfaces

State-of-the art ion beam polishing (AdLIGO)

ΕT

More realistic surfaces

ABORATOIRE MATÉRIAUX AVANCÉS

Results - ion beam polishing

rms flatness	Pcirc all modes (W/W)	Pcirc LG33 (W/W)	fraction LG33	contrast
no defects	566.3	566.3	100.0%	0
1.0 nm - f ⁻²	257.5 ± 91.1	133.0 ± 94.8	46.6 ± 15.9%	68.4 ± 15.3%
ion beam polishing	400.3 ± 79.2	294.6 ± 11.5	71.1 ± 13.9%	60.5 ± 20.4%

Can we cut the low-frequency defects?

ABORATOIRE MATÉRIAUX

Results - cutoff model

rms flatness	Pcirc all modes (W/W)	Pcirc LG33 (W/W)	fraction LG33	contrast
no defects	566.3	566.3	100.0%	0
1.0 nm - f ⁻²	257.5 ± 91.1	133.0 ± 94.8	46.6 ± 15.9%	68.4 ± 15.3%
ion beam polishing	400.3 ± 79.2	294.6 ± 11.5	71.1 ± 13.9%	60.5 ± 20.4%
cutoff @ 100 m ⁻¹	562.9 ± 1.6	560.2 ± 3.1	99.5 ± 0.3%	$1.8 \pm 0.8\%$

VANCÉS

Are simulations reliable?

➤ results comparable with those obtained by H. Yamamoto using SIS

Collaboration ongoing with APC to compare simulations to experiment: for the moment, order-of-magnitude agreement

Summary

- at this stage, simulations are not to be taken literally, but more like order-of-magnitude estimations
- troubles come from low-frequency defects (less than $\sim 10^2 \text{ m}^{-1}$) astigmatism is virtually absent in the "cutoff" model
- LG33 much more demanding than what previoulsy thought

LG00 vs LG33

1.0 nm - f ⁻²	Pcirc all modes (W/W)	Pcirc input mode (W/W)	fraction input mode	contrast
LG00	555.9 ± 3.7	555.6 ± 3.7	99.95 ± 0.03%	0.15 ± 0.07%
LG33	257.5 ± 91.1	133.0 ± 94.8	46.6 ± 15.9%	68.4 ± 15.3%

Simulation of mirror surfaces (1)

1) create a map in the frequency plane $S_2 \sim 1/f^{n+1}$, \rightarrow modulus of the FT of the surface

2) add a random phase

3) iFFT \rightarrow random surface

4) scale surface to the required rms

Simulation of mirror surfaces (2)

ABORATOIRE MATÉRIAUX