Alternative Technologies?

The 3rd ET General Meeting @ Budapest Nov. 2010

Waseda Inst of Advanced Study
Kentaro Somiya

ET-D sensitivity

by S.Hild et al.

ET-LF

- 2m suspension (d=5mm)
- · 10K 211kg silicon
- · 18kW DRSE
- · FD-SQ + FD-HD

ET-HF

- · 290K 200kg silica
- 3MW LG33 RSE
- · FD-SQ + FD-HD

ET-D = ET-C Xylophone curve + susp TN + F-cav losses

Quite realistic sensitivity

ET-D sensitivity

ET-D = ET-C Xylophone curve + susp TN + F-cav losses

Quite realistic sensitivity

List of more advanced techniques

- (Gravity-gradient subtraction)
 [Harms PRD 09] See Talk by G.Cella
- · Suspension-point interferometer
- K-etalon and coating-less mirrors
- (EIT filter) [Mikhailov PRA 06]

- Grav-grad noise
 Seismic noise
 Suspension TN
 Mirror TN
 F-cav losses
- (Speed-meter) [Chen GRG 10] See Talk by H. Mueller-Ebhardt
- · (Ponderomotive amplifier) [LIGO-G1000568]
- 120K ET-HF
- · Kamaboko mirror

High-power issue

Silicon-mirror issue

Suspension-point interferometer

R.Drever (1987) Y.Aso (2004)

- Reduce seismic noise and RMS motion
- · Reduce mixture of Marionette TN and heat-link vibration
- · Planned for LCGT but given up for the high cost

TN reduction with SPI

Susp TN calculated with the code by F.Piergiovanni, M.Punturo and P.Puppo (2009) Quantum noise calculated by A. Thuering and H.Mueller-Ebhardt (2010)

SPI can improve the sensitivity at f<~30Hz.

Some suspension parameters are quite challenging. (ex. Structure loss of 1e-9, Vertical-Horizontal coupling of 1e-3)

→ Ribbon suspension should be considered.

Mirror TN reduction in room temperature

There are 4 ways to reduce mirror TN:

- (i) Increase effective beam radius
- (ii) Decrease the number of coatings
- (iii) Increase Q
- (iv) Decrease temperature

A number of proposals to decrease coating layers

- Khalili cavity/etalon
 - ~ Control issue and heat issue
- Monolayer grating
 - ~ Noise behavior is being investigated
- · Corner reflector
 - ~ Heat issue and TR noise
- Blue laser IFO
 - ~ Scattering and absorption issue
 - ~ Shot noise improvement

Heat issue in ET-HF

<u>Problem</u>

```
3MW in each arm \rightarrow 1-2W heat absorption
```

-> 290K becomes 293K+ at the center

→ Thermal lensing

→ TCS noise

Solution = 120K ET-HF

We can cool down ET-HF as well!

- Thermal conductivity is high at 120K
- Thermoelastic noise is zero at 120K
- Thermal lensing is almost zero
- Thermal noise is reduced by ~55%

20K-120K Xylophone with SPI

- · SPI reduces seismic noise and susp TN on Marionette
- · Alignment control is made on Marionette and 120K mass
- · Suspension TN and mirror TE noise are small
- Setup is simpler

Larger mirror

Can we make a 200kg silicon Can we make a bigger one?

Sorry, This was the case mirrfor Sapphire (pointed out at the meeting)

A-axis cylinder is made in Czochralski process. C-axis cylinder is needed for GWD mirrors.

Maybe we can make R=30cm a-axis cylinder?

$$R^2=a^2+(h/2)^2$$

h

$$R^2=a^2+(h/2)^2$$

ha=26.8cm \rightarrow m=140kg \(a=h/2\)
 \$a=24.5cm \rightarrow m=150kg \(max\)\$

One way to realize heavy crystallized c-axis mass. There might be a better shape.

Summary

- Susp TN at f<10 can be improved with <u>SPI</u>
- · Multiple ways to improve mirror TN have been proposed
- 120K ET-HF improves mirror TN w/o problems of susp TN
- · 120K ET-HF helps heat issues
- · Kamaboko mirror
- · Seismic noise could be suppressed a bit more with SPI
- · Gravity gradient noise can be hopefully lowered
- · EIT filter could be useful for the filter cavity
- · Speedmeter realizes sub-SQL w/o filter cavities
- · Ponderomotive/NLC amplifier is strong against losses