Magnetic noise: ET mitigation POC, capitalizing on Virgo lessons

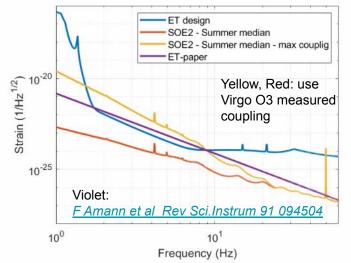
Andrea Chincarini, Irene Fiori

with

Federico Armato, Beatrice D'Angelo, Rosario De Rosa, Federico Paoletti, Maria Concetta Tringali, Francesca Bucci, Flavio Nocera, Antonio Pasqualetti, Gilles Quéméner

EGO, INFN-Genova, INFN-Napoli, INFN-Pisa, LPC Caen, INFN-Firenze

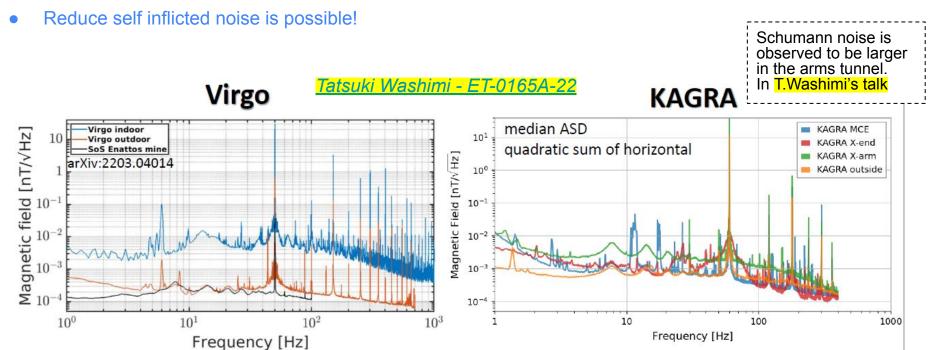
ET-0175A-23


XIII ET Symposium - Cagliari - 8-12 May 2023

The magnetic noise issue

- Magnetic noise has been studied and addressed by Virgo and LIGO, <u>A. Cirone et al Class.Quant.Grav. 36 (2019) 22</u>] <u>A.Cirone et al Rev Sci Instrum 89, 114501 (2018)</u>, <u>B P Abbott et al 2016 Class. Quantum Grav. 33 134001</u>, <u>P Nguyen et al 2021 Class. Quantum Grav. 38 145001</u>
- Two ingredients:
 - Ambient noise level: Earth noise (= Schumann Res.) + sources close to ITF (Self-inflicted noise)
 - Strength of coupling to ITF (at sensitive locations)
- Expectation for ET is based on the extrapolation of measurements done in Virgo O3, <u>M C Tringali et al Galaxies 2020 8(4) 82</u>

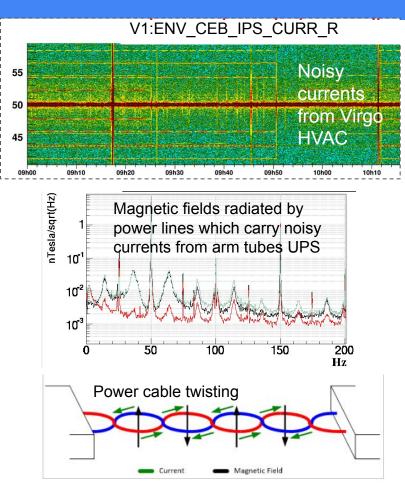
Warnings: measurements are only partially supported by models. No direct measurement below 10Hz.


- Noise reduction goals:
 - Ambient noise at Earth noise level
 - <u>and</u> reduce coupling by a factor 10²-10³ wrt current ITFs
 - Similar requirement from stochastic correlated noise study, <u>*K Janssens et al PhysRevD 104 (2021) 122006*</u>

ET magnetic noise projection, assuming ambient noise is just Earth noise. Rosario De Rosa's talk this conference

Self-inflicted magnetic noise

- Sources are part of the site and experimental infrastructure, e.g. e.m. fields radiated by power cables
- Virgo is overwhelmed by "self-inflicted" noise, which is ~10 to 50 times above local Earth noise
- KAGRA has achieved a quieter magnetic condition, close to the (local) Earth noise

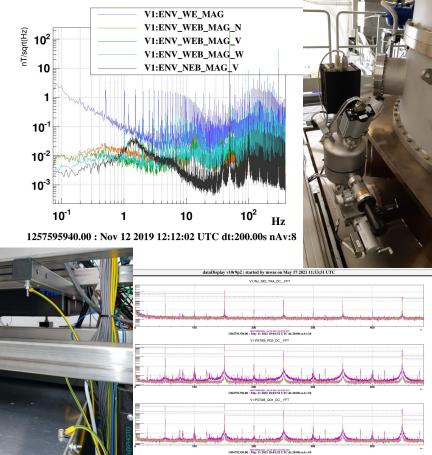

Power distribution system

EM fields radiated by cables/wires is the major source of magnetic pollution at Virgo, e.g. HVAC, UPS

Guidelines:

Visit M.C.Tringali's poster

- Power cables
 - Route cables at distance from interferometer
 - Twist phase wires, shielding. Several mitigation techniques exist for HV power distribution lines, <u>JC</u> <u>Bravo-Rodríguez Energies</u> 2019. 12(7). 1332, <u>A.Canova. L.Giaccone</u> <u>CIRED 2009 IEEEXplore</u>
- Power supply grids: separate power grid of site facilities (heavy machinery) and low noise electronics to avoid noise from "dirty" loads
- Beware of noisy UPS
- Grounding: separate ground of VAC chambers / low-noise electronics from ground of heavy machinery, stray currents
- Remote DC generation and distribution, <u>F Nocera F.Paoletti</u> <u>VIR-0737B-09</u>, <u>VIR-0545B-10</u>


Devices

Magnetic fields from Electric and Electronic devices

- radiated by devices
- radiated by powering cables << most relevant
- radiated by digital communication wires << most relevant

Guidelines:

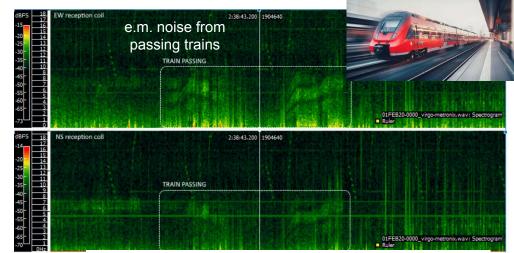
- Select devices with low magnetic emission
- Deprecated devices: e.g. PWM based, switching power supplies, open core transformers, <u>I Fiori et al Handbook of GW</u> <u>astronomy</u>
- Distancing sources and cables/wires from coupling locations
- If distancing is not possible, study and test ad hoc shielding solutions
- Grounding of electronics, <u>M Was ET-0423A-21</u>
- Digital devices: optical fiber communication
- Standardization of electronics (racks, boards, connectors) <u>F Nocera F Paoletti VIR-0737B-09</u>, <u>VIR-0545B-10</u>

Anthropogenic

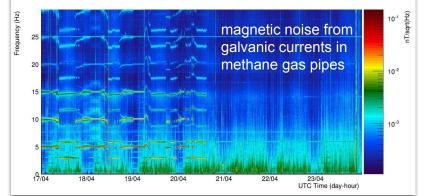
Magnetic noise from sources within a few km from the site:

- Trains (sitewide magnetic glitches from 2-3km far railways) F.Paoletti's talk
- Galvanic currents from methane pipes

Produce stray current in the vacuum pipes (by induction or conduction)


Measured amplified magnetic field close to vacuum pipes

Similar amplification effect is measured at Virgo pipes for Shumann resonances (T.Washimi's talk)


Can be an issue close to TM/Suspended optics chambers

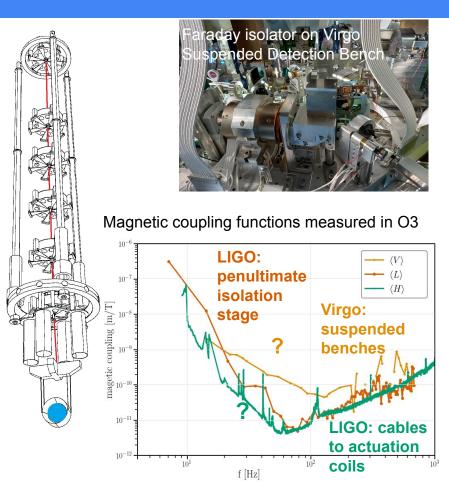
Mitigation:

Electrically insulate chambers from pipes

Spectrogram of V1:spectro_ENV_EXT_MAG_W_300_100_0_0 : start=1334188549.000000 (Sat Apr 16 23:55:31 2022 UTC)

Couplings to ITF

Coupling of ambient fields is not uniform throughout the ITF


Most critical coupling sites are the suspended elements carrying permanent magnets: test masses, optical benches and their suspension systems

Critical components:

- Coil magnet actuators, Faraday isolators, pico-motors
- Cables (e.g. coil drivers), electronics, connectors (induced currents)
- Conductive parts close to actuation magnets, because of eddy currents, e.g. Virgo payload cage, <u>A.Cirone et al</u> <u>Rev Sci Instrum 89. 114501 (2018)</u>

Some rough indications from Advanced Virgo and LIGO

Currently under study in AdV+

Mitigation strategy

Challenging mitigation goals:

- ★ Preserve environmental noise at Schumann noise level (~0.3 pT/sqrtHz,10-50 times less than Virgo)
- ★ Reduce couplings by factor 100-1000 with respect to present ITFs.
- ★ Focus on coupling sites

Actions (pursue both):

- 1. Global shields (also multiple shields) to protect critical coupling sites (TMs, optical benches ...)
- 2. Ad-hoc strategies for sources close to critical coupling sites (e.g. cables, vacuum devices, cryogenic devices ...)

Main lessons learned from Virgo:

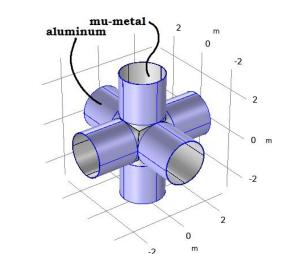
- ★ Reduce noise by design build a low-magnetic-noise infrastructure. Attention to site facilities (HVAC, UPS) and experimental equipments
- ★ Use robust and maintenance-free technologies

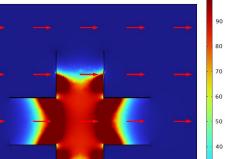
Overview of mitigation strategies

	Shielding factor	S(x,y,z) =	Magnetic f	ield in absence of shield				
			Magn	etic field with shield				
	passive shielding					active shielding		
	magnetostatic	eddy curre	ents s	ource canceling	exotic	solutions	active cancelling	
Freq.	better @ low f	better @ h	igh f	independent	solution	n specific	solution specific	
How	high permeability ferromagnetic materials Prefer passive so	highly cond materia		set of permanent agnets in suitable configuration	superco	naterials onductors oosites	feedback circuit consisting of sensors, dsp, amplifiers and conductors in various configurations	

PRO: simplicity, operational stability, safer (no generated extra fields), no need of maintenance ... and cheaper.

CONS: less effective (smaller shielding factor) >> use multiple shields ("shield the shield"). Exotic and active solutions: only for ad hoc implementations and if no need of extra structure (e.g superconducting screens)

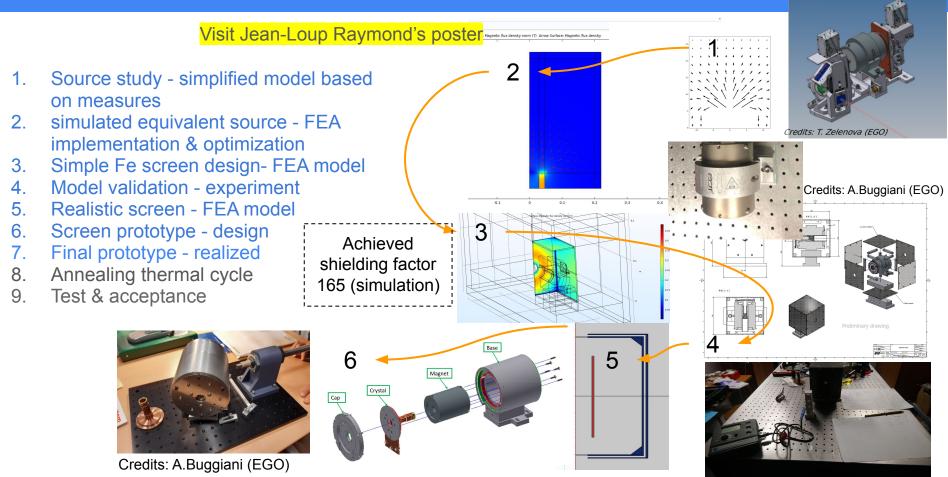

Simulation works


Federico Armato's talk & poster

Objective: shield the sensitive volume of suspended elements from external fields (payloads, detection benches, ...)

Double shielding:

- 1. Magnetostatic shielding: mu-metal layer added to steel vacuum chamber
- 2. Eddy current shielding: aluminum hollow cylinders



shielding factor

100

30 20 10

Magnetostatic shield for Faraday isolators

10

SDB1

Monitoring

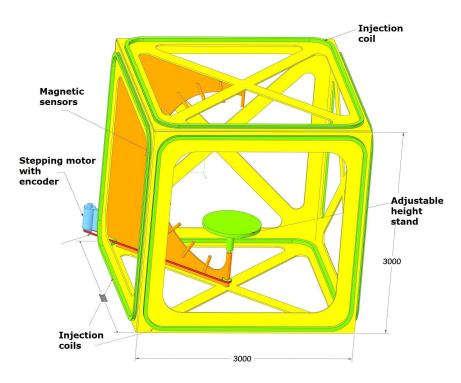
Active monitoring of couplings

- Large and small coils like at LIGO and Virgo
- Better and more distributed system to be studied

Passive monitoring

Distributed array of sensors

- Outside and inside vacuum
- At coupling sites, at potential sources (electronics racks, devices ...)
- Instrumented robots (mapping)


Magnetic facilities

Magnetic facilities are need for ET:

- Laboratory to characterize noise emission of devices (selection), test mitigation solutions
- Workshop to treat and machine magnetic components (e.g. mu-metal cutting, annealing treatment, degauss, etc.)

MANET - MAgnetic Noise test facility for ET

- Small scale laboratory to be realized at EGO
- Part of ETIC project
- Design is in progress
- Procurement of parts in progress

Challenging goals:

• Preserve Earth noise condition AND reduce coupling by 100-1000 times wrt current detectors.

Mitigation strategies:

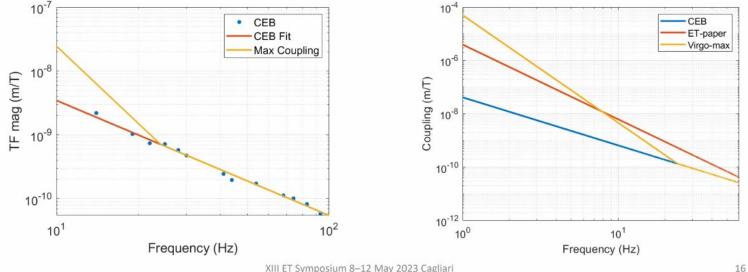
- Focus on sensitive locations (suspended optics). Global shields of the critical in-vacuum volumes (e.g. magnetostatic and eddy current shields) AND address local (closeby) sources with ad-hoc solutions (e.g. power cables and wires)
- Whenever possible use passive shielding (magnetostatic and eddy current shielding). Active techniques are also considered for ad hoc solutions.

Magnetic mitigation is a transversal task which is linked to many ET SYSs and Sub-SYSs:

 INFRA_DEV (electricity); VACUUM (chambers shielding and material compatibility for in-vac mitigation solutions); PAY and SUSP (actuator design, marionetta-cage design). ANM-Environmental_sensors for extensive monitoring of the environmental noise also in-vacuum, and the magnetic injection system for measure and monitor the magnetic coupling. OTHERS (low noise electronics, wiring & communication, standardization of devices).

A lot of simulation work, prototyping and testing

• Need of magnetic noise measuring facility. The MANET small scale laboratory will be realized at EGO.


Backup slides

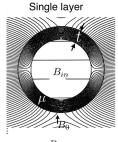
Noise Coupling

Results from Virgo and Sos Enattos

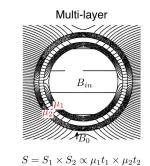
The noise coupling as measured at Virgo, including only the contribution measured • at CEB, or the full contribution (CEB+NEB+WEB) is compared with the coupling used in the ET paper. The noise model is compared with the measurements performed in Sos Enattos

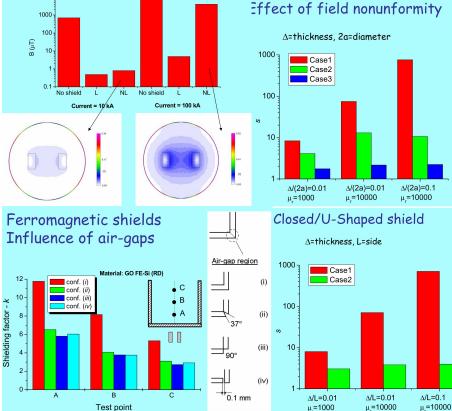
XIII ET Symposium 8-12 May 2023 Cagliari

16


Rosario De Rosa - talk SPB session Monday

Magnetostatic shielding


Ferromagnetic materials warp and capture magnetic field lines


Several effects:

- Saturation: use multi-layers
- Nonlinearities in the B-H curve
- Careful handling and material working
 - \circ µ degrades with cutting and bending
 - Need annealing treatment to recover
- Shield position, geometry and external field, uniformity
- Beware of discontinuities and air gaps

Case1

Case₂

Case3

er i uniugneric anielua.

Eddy current shielding

- Can be both passive and active
 - active HeCo are the standard in industry
- Mono-directional component
 - superimpose fields of different Helmholtz pairs
- Most homogenous region $\rightarrow \sim R/2$
 - Large region \rightarrow large coils (2R)
- In passive configuration can be coupled to a resonant circuit to screen particularly nasty frequencies (i.e. 50Hz)
 - Nested solutions, combined approaches can be devised, high design freedom
- $\bullet \qquad \text{Spherical shells} \rightarrow \text{best shielding and homogeneity}$

Compensated field

Takeaway for Helmholtz coil: good homogeneity for its simplicity, versatile design, insufficient screening if used alone (passively)

Actuation magnets design

Objective: reduce effective dipole moment of magnets

Techniques:

- counter aligned magnets (Halbach configuration)
- mu-metal shields around permanent magnets of the marionette, the test masses and first suspension filter

Several papers on perm. magnet shape & topology optimization.

- Mainly refer to specific applications but conceptually one could imagine a suitable set of magnets to shape a local field with given characteristics (within limits)
 - minimize dipole moment
- Main target: test mass / big optics alignment

Shaped field permanent magnets, arrangement and optimization examples:

lower

low

19

lower

asym