

ET-022-09 LIGO-G0900648-x0

Thermal noise in 3rd generation gravitational wave detectors

R. Nawrodt^{1,2}, <u>I. Martin¹</u>, E. Chalkley¹, R. Bassiri¹, S. Reid¹, A. Cumming¹, L. Cunningham¹, S. Rowan¹, J. Hough¹, C. Schwarz², D. Heinert², P. Seidel², F. Brückner³, T. Clausnitzer³, E.-B. Kley³, A. Tünnermann³,

M. Britzger⁴, O. Burmeister⁴, J. Dück⁴, D. Friedrich⁴, H. Lück⁴, R. Schnabel⁴, K. Danzmann⁴

¹ Institute for Gravitational Research, University of Glasgow, G12 8QQ Glasgow, UK
 ² Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
 ³ Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
 ⁴ Albert-Einstein-Institut, Leibnitz Universität Hannover, D-30167 Hannover, Germany

8th Edoardo Amaldi Conference in Gravitational Waves Columbia University, New York

Martin, Nawrodt, New York 06/2009

ET Design Study - contract # 211743

Introduction

- currently design study in Europe concerning a 3rd generation detector (Einstein Telescope - ET)
- improvement of roughly a factor of 10 between different generations of GWD
- 3rd generation gravitational wave detectors will be limited by several kinds of noise
- critical limitation:
 - seismic noise (gravity gradient)
 - thermal noise

Thermal Noise

- thermal noise is dependent on
 - temperature ↔ thermal energy
 mechanical loss ↔ spectral distribution
 spatial distribution ↔ inhomogeneous losses
- minimum noise will be achieved for low mechanical loss at lowest possible temperatures
- lossy parts need to be far away from the interaction laser-surface

Thermal Noise

main contribution arises from:

* [Evans et al. 2008]

Bulk Thermal Noise

Brownian thermal noise

$$S_{X}(f,T) = \frac{2k_{B}T}{\pi^{3/2} f} \times \frac{1-\sigma^{2}}{w Y} \times \phi_{substrate}(f,T)$$
[Liu, Thorne 2000]

thermoelastic noise

$$S_{TE}(f,T) = \frac{8}{\sqrt{2\pi}} \alpha^2 (1+\sigma)^2 \frac{k_B T^2 r_0}{\kappa} \times J(\Omega) \qquad [f]$$

Rowan et al. 2000, Aspen Meeting] Cerdonio et al. 2001]

$$J(\Omega) = \sqrt{\frac{2}{\pi^3}} \int_{0}^{\infty} du \int_{-\infty}^{+\infty} dv \frac{u^3 e^{-u^2/2}}{(u^2 + v^2)[(u^2 + v^2)^2 + \Omega^2]}$$

correction term for non-adiabatic case

$$\Omega = \frac{\omega}{\omega_{\rm C}} \qquad \qquad \omega_{\rm C} = \frac{\kappa}{\rho {\rm Cr}_0^2}$$

Bulk Thermal Noise

 material selection is driven by thermal and mechanical properties

silicon has excellent properties for low noise optics

[Winkler et al., Phys. Rev. A 44 (1991), Rowan et al., Proceedings of SPIE 292 (2003)]

Bulk Thermal Noise

■ Si(111) substrate, w = 60 mm, Q = 3×10⁸ (@ 300K), Q = 1×10⁹ (@ 18K)

around 18 and 125 K Brownian thermal noise dominates \rightarrow reduction of thermal noise by use of low loss materials

Brownian thermal noise

$$S_x(f,T) \approx \frac{2k_BT}{\pi^2 f} \frac{d}{w^2 Y} \left(\frac{Y'}{Y} \phi_{\parallel} + \frac{Y}{Y'} \phi_{\perp} \right)$$
 [Harry et al. 2002]

thermo-optical noise ->thermoelastic/thermorefractive noise

$$S_{TO}(\omega,T) \approx \frac{2\sqrt{2}}{\pi} \frac{k_B T^2}{w^2 \sqrt{\kappa C \omega}} \times \left(\alpha_C d - \frac{\partial n}{\partial T} \lambda - \alpha_S d \frac{C_C}{C_S} \right)^2$$
 [Evans et al. 2008]

compensation of different contribution is possible

values of the temperature dependence of several properties up to now not available \rightarrow but: compensation or reduction at cryogenic temperatures expected

influence of doping on the mechanical losses of coating materials

doping changes the microscopic structure \rightarrow change in activation energy

 influence of heat treatment on the mechanical losses of coating materials

- annealing improves optical properties
- low temperature loss peaks appear during heat treatment (T_{peak} ~ 20 K)
- electron diffraction reveals crystallisation above 800°C

[see poster R. Bassiri] [see poster S. Penn]

Martin, Nawrodt, New York 06/2009

currently available mechanical loss values

- Brownian thermal noise dominates
- thermoelastic noise is much smaller
- Evans et al. 2008: (partly) cancellation of thermoelastic and thermorefractive noise → Brownian noise remaining relevant noise component

Coating thermal noise is determined by Brownian thermal noise. The loss peaks in the mechanical loss spectrum at around 18 K reduce the expected improvement of the GWD.

Design Sensitivity

 in order to achieve the desired sensitivity a larger beam radius is needed

Novel Approaches

resonant waveguide

[Brückner et al., Optics Express 17 (2009) 163 - 169]

thickness of tantala by one order of magnitude smaller than in dielectric stacks

reduced thermal noise

monolithic waveguide

[Brückner et al., Optics Letters 33 (2008) 264 - 266]

no lossy dielectric materials needed, no interfaces, excellent thermal properties

reduced thermal noise

Resonant Waveguide Concept

noise estimation

$$S_{x}(f,T) \approx \frac{2k_{B}T}{\pi^{2}f} \frac{d}{w^{2}Y} \left(\frac{Y'}{Y}\phi_{\parallel} + \frac{Y}{Y'}\phi_{\perp}\right)$$

thickness of tantala smaller by one order of magnitude \rightarrow thermal noise is reduced by $\int 10$ (other types of noise much smaller)

• still: optical absorption \rightarrow heating in the waveguide

Monolithic Waveguide Concept

mechanical loss will be influenced by the surface layer

- surface is increased compared to bulk samples
- modelling of surface losses similar to fused silica

$$\phi_{\text{surface}} \sim \frac{S}{V}$$

S ... surface area V ... volume

Monolithic Waveguide Concept

- until now no systematic investigation of silicon surface loss (reason: temperature as an additional parameter)
- compilation of several loss measurements vs. smallest dimension of the sample (~ V/S)
- temperature ~ 1-15 K

structure size of the T-structure

Monolithic Waveguide Concept

estimation of the Brownian thermal noise at 18 K

all structures are smaller than the wavelength of the laser light \rightarrow structure is not resolved by laser \rightarrow treatment as "effective media"

volume averaged thermal properties

T-structure adds no significant noise to the bulk Brownian noise

total noise is governed by bulk Brownian noise

Summary

- silicon remains an attractive option for a 3rd generation detector substrate material
- dielectric multilayer stacks provide significant Brownian thermal noise of mirrors \rightarrow large beam diameters needed
- investigation on reducing the mechanical loss by heat treatment is ongoing
- monolithic resonant waveguides provide a low thermal noise concept for mirrors and cavity couplers
- experimental verification of surface loss predictions currently underway
- novel low noise concept for a beamsplitter still needed

References

Evans et al. 2008]

M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, G. Ogin, *Thermo-optic noise in coated mirrors for high-precision optical measurements*, Phys. Rev. D, Vol. 78, 2008.

Liu, Thorne 2000]

Y. T. Liu, K. S. Thorne, *Thermoelastic noise and homogenous thermal noise in finite sized gravitational-wave test masses*, Phys. Rev. D, Vol. 62, 2000.

[Rowan et al. 2000]

S. Rowan et al., talk at the Aspen 2000 Winter Conference on Gravitational Waves and their detection, *Implications of thermo-elastic damping for cooled detectors*, 2000.

[Cerdonio et al. 2001]

M. Cerdonio, L. Conti, A. Heidmann, M. Pinard, *Thermoelastic effects at low temperatures and quantum limits in displacement measurements*, Phys. Rev. D, Vol. 63, 2001.

[Schwarz et al. 2009]

C. Schwarz, R. Nawrodt, D. Heinert, M. Thürk, R. Neubert, W. Vodel, A. Tünnermann, P.Seidel, *Cryogenic setup for Q-factor measurements on bulk materials for future gravitational wave detectors*, Proceedings of ICEC22-ICMC 2008, The Korean Institute of Applied Superconductivity and Cryogenics, ISBN 978-89-957138-2-2, Seoul/Korea 2009.

[Touloukian et al. 1970]

Y. S. Touloukian, C. Y. Ho, *Thermal Expansion - nonmetallic solids*, TPRC Data Series, New York, Plenum 1970.

[Harry et al. 2002]

G. M. Harry, A. M. Gretarrson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, N. Nakagawa, *Thermal noise in interferometric gravitational wave detectors due to dielectric coatings*, Class. Quantum Grav. 19, 2002.

[Zendri et al. 2008]

J. P. Zendri, M. Bignotto, M. Bonaldi, M. Cerdonio, L. Conti, L. Ferrario, N. Ligurio, A. Maraner, E. Serra, L. Taffarello, *Loss budget of a setup for measuring mechanical dissipations of silicon wafers between 300 and 4 K*, Rev. Sci. Instrum. 79, 2008.