Alessandro Alberto Trani MSC Fellow Niels Bohr Institute The University of Tokyo Okinawa Institute of Science and Technology

Eccentric mergers in black hole discs around a supermassive black hole

In collaboration with: Stefano Quaini, Monica Colpi (Milano-Bicocca)

The Niels Bohr International Academy

DO BLACK HOLE MERGERS IN GALACTIC NUCLEI HAVE ANY SIGNATURE FEATURE?

i.e. how does the environment galactic nuclei affect the properties of merging compact objects?

- can the SMBH trigger an excess of eccentric mergers?

- answer: no

Gravitational waves, from where?

Many pathways to merger in galactic nuclei with SMBH (+ AGN disk)

Interactions with the SBMH

- von Zeipel-Kozai-Lidov mechanism
- extreme mass ration inspirals
- Interactions with the AGN
 - disk captures
 - gas-capture binary formation
 - disk migration
 - binary-circumbinary gas interactions
- Interactions among BHs
 - single-single (2-body) encounters
 - binary-single (3-body) encounters

Just like in stellar clusters... or not?

Three-body encounters in *isolation*

Main effects on GW progenitors:

- Decrease GW merger time by shrinking binary separation / increasing eccentricity
- Exchanges tend to equalize the mass ratio of binary members
- No expected correlation between BH spin axis and orbital plane (but see Trani et al. 2021)

Three-body encounters around a SMBH

Happen in a disk of compact objects

Main differences:

Initial orbits are Keplerian around the SMBH
 The SMBH tidal field limits the binary

Several channels to form a stellar disk around a SMBH:

In AGNs:

- AGN disk gas captures
- Star formation in AGN disk

In "dry" galactic nuclei:

- Disk star formation (as in the galactic center, e.g. von Fenllenberg+2022)
- Anisotropic mass segregation / vector resonant relaxation (e.g. Szolgyen+2022)

How does this affect the properties of merging binaries?

Samsing+2022 suggests an excess of eccentric mergers - but no numerical study exists so far

Methods: N-body simulations including post-Newtonian terms (TSUNAMI, Spera & Trani 2022)

+ simulations without the

3-body encounters + the SMBH

SMBH only provides gravitational potential wherein 3-body encounter takes place

Outcomes Eccentricity distribution of post-encounter binaries

neglecting the SMBH dramatically overestimates # of (eccentric) mergers

Eccentric mergers in LVK band

~33% of mergers have $e>0.1~~{
m at}$ $f_{
m gw}=10\,{
m Hz}$

however

very similar outcomes to the nuclear star cluster case

neglecting the SMBH dramatically overestimates # of (eccentric) mergers

σ-2 0.6 σ -2-isol 0.5 σ -2-MB0.4 0.3 0.2 0.1 0.0 -2 -6-3 -1-7-50 $\log(e)$ at $f_{GW} > 1 \text{ Hz}$

Eccentric mergers entering ET band

About 26% of all mergers with $e>0.1~~{
m at}~f_{
m gw}=1\,{
m Hz}$

45% of mergers with detectable eccentricities in ET

Conclusions

1. Mergers from 3-body encounters in black hole disks are very similar to their counterpart in nuclear star clusters without a SMBH

2. Previous studies that neglected the role of the SMBH have overestimated the fraction of mergers / eccentric mergers by $\sim 12x$ / 2x times

3. ~33% of in-cluster mergers have high (>0.1) eccentricities in LVK band, ~45% have detectable eccentricities in the ET band

(4) Not all disks are equal: disk velocity dispersion controls the merger efficiency

Future work

- + Add population synthesis-informed binary population
- + Consider encounter rates for different disk types
- + Add drag and migration forces for BHs embedded in AGNs

Property	Values
$a_{\rm inn}$	$\log \mathcal{U}(0.1, R_{\text{Hill}}/2)$
$e_{\rm inn}$	0
i _{inn}	0
$e_{\rm sin}, e_{\rm out}$	$\mathcal{R}(\sigma)$
i_{sin}	$\mathcal{R}(\sigma/2)$
m_1, m_2, m_{sin}	$\log \mathcal{U}(10, 50) \mathrm{M}_{\odot}$
σ	$10^{-1}, 10^{-2}, 10^{-3}$

-

Methods: direct N-body simulations including post-Newtonian terms (TSUNAMI)

3-body encounters + the SMBH

 $e_{\rm sin}, e_{\rm out} \propto \mathcal{R}(\sigma)$ Initial setup $i_{\rm sin} \propto \mathcal{R}(\sigma/2)$ $\sigma = 10^{-1}, 10^{-2}, 10^{-3}$ **SMBH** $R_{
m enc}$ Encounter location Outer orbit: a_{out}, e_{out} Inner orbit: a_{inn}, e_{inn} $a_{\sin}, e_{\sin}, i_{\sin}$ **Single BH BH** binary

Three types of disks:

 σ : dimensionless velocity dispersion

Distributions relative velocity between the binary and the single

Outcomes

Final binary eccentricities

Number of mergers

Outcomes	<i>σ</i> −1	<i>σ</i> -2	σ-3
Prompt flyby	11.55%	3.53%	4.99%
Prompt exchange	46.02%	35.99%	32.82%
Resonant original	18.48%	26.55%	25.68%
Resonant exchange	18.66%	33.40%	35.70%
Breakup	4.85%	0%	0%
Merger	0.44%	0.54%	0.824%
$t_{\rm GW} < t_{\rm Hubble}$	37.31%	38.5%	42.13%

σ -2 σ -2-isol σ -2- \mathcal{MB}

Prompt flyby Prompt exchange **Resonant** original Resonant exchange Breakup Merger $t_{\rm GW} < t_{\rm Hubble}$ e > 0.1 at $f_{\rm GW} > 10 \,{\rm Hz}$

"" over total mergers

3.20%	1.17%	97.19%
32.95%	41.10%	0.27%
27.43%	22.16%	0.07%
35.90%	28.21%	0.02%
0%	$\sim 10^{-3}\%$	2.44%
0.54%	6.39%	0.26%
38.31%	47.85%	34.31%
0.18%	2.70%	0.11%
33.76%	42.25%	42.80%