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Abstract. Periodic patterns of logarithmic oscillations can arise in primordial curvature
perturbation spectra and in the associated stochastic gravitational-wave background via different
mechanisms. We show that, in the presence of log oscillations, the spectral shape of
the stochastic background has a unique parametrization independent of its physical origin.
We also show that this log-periodic modulation can be generated in any scenario beyond
Einstein gravity endowed with an approximate discrete scale invariance, a symmetry typical of
deterministic fractal spacetimes that could emerge in quantum gravity under certain conditions.
We discuss how a log-oscillatory spectral shape arises from concrete inflationary models beyond
Einstein gravity and the prospects for detection in Einstein Telescope and other next-generation
gravitational-wave observatories. We find that these instruments will be sensitive to log-
periodic features if the detection is made with a high signal-to-noise ratio (SNR) and that the
error scales as 1/SNR.
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1. Introduction

The discovery of gravitational waves (GWs) in 2015 [1,2] heralded a new era of observations
that promise to share light on a number of questions in astrophysics and stellar evolution,
cosmology and gravitation. While the confirmation of Einstein’s theory of general relativity
and the verification of the main models of black holes and binary mergers remain the core
science pursued by large collaborations such as LIGO-Virgo-KAGRA (LVK), LISA, Einstein
Telescope (ET) and Cosmic Explorer (CE), there is also latitude for exploring and constraining
alternative scenarios of gravity and of the physics of compact objects. In particular, this
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acknowledged capability of GW astronomy with present- and next-generation instruments has
been driving efforts to understand what GWs can say about the fundamental nature of gravity
and classical or quantum departures from Einstein’s theory [3–17].

One of the main protagonists in this quest is the stochastic gravitational-wave background
(SGWB), the random superposition of GWs from different sources [18–20]. Models of SGWB
can usually be divided into two, those of relatively recent astrophysical origin and those of
primordial origin. Recently, a SGWB possibly consistent with a population of supermassive
black-hole binaries has been indicated at frequencies 𝑓 ∼ 10−9−10−8 Hz [21–24], while a
SGWB relic of early-universe physics, expected at higher frequencies, remains elusive. In
the latter case, examples of seeds are inflationary tensor perturbations. All early-universe
models predict a certain spectral shape Ωgw( 𝑓 ), i.e., a SGWB amplitude as a function of
the observed frequency 𝑓 , which can be catalogued into templates. The simplest spectral
shape is a single power law Ωgw( 𝑓 ) ∼ 𝑓 𝑛t , corresponding to a featureless line with tilt 𝑛t in
logarithmic scale. However, in some cases the spectral shape can be non-monotonic or even
have features. The type of features depends on the underlying model. Along the above lines,
one can pose the following questions: Are there features in the SGWB that bear the imprint
of fundamental physics beyond Einstein gravity? Can we observe them with present or future
GW interferometers?

In this paper, we examine known and new theoretical models generating a SGWB spectral
shape modulated by a specific type of features, logarithmic oscillations:

Ωgw( 𝑓 ) = Ω̄gw( 𝑓 )
[
1 +

𝑙max∑︁
𝑙=1

𝐹𝑙 ( 𝑓 )
]
, (1)

𝐹𝑙 ( 𝑓 ) = 𝐴c
𝑙 cos

(
𝑙𝜔 ln

𝑓

𝑓∗

)
+ 𝐴s

𝑙 sin
(
𝑙𝜔 ln

𝑓

𝑓∗

)
, (2)

where in (1) 𝑓 is the observed frequency of the GW signal, Ω̄gw( 𝑓 ) is the envelope or main
spectral shape along which the modulation takes place and 𝑙 labels the harmonics, up to some
number 𝑙max. In (2), 𝑓∗ is the frequency scale corresponding to some characteristic momentum
or length scale, 𝐴c

𝑙
and 𝐴s

𝑙
are constant amplitudes associated with, respectively, the cosine

(c) and sine (s) term and, finally, 𝜔 is the frequency of the log oscillations, a theoretical or
phenomenological parameter not to be confused with the observational parameter 𝑓 .

Our main theoretical contribution (section 2) is to show that the spectral shape (1)–(2) can
arise in any matter or gravitational theory enjoying discrete scale invariance (DSI) in a certain
frequency (energy, length) range. To put it in practical terms, any SGWB whose plot displays
log-periodic oscillations can be described by (1)–(2) for a non-trivial choice of the parameters
therein. This result is model-independent but we discuss various generation mechanisms
for a DSI that fall into two categories: scenarios where DSI is an emergent property due to
matter (i.e., non-gravitational) fields and scenarios, which include models of the early universe
coming from quantum gravity, where DSI is an intrinsic property of spacetime, either as a
fundamental symmetry of spacetime geometry or an emergent one from certain choices of
Fock vacua or from a modified dispersion relation for the graviton.

For both categories, we give explicit examples of early-universe scenarios generating a
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log-periodic pattern in primordial power spectra and/or in the primordial SGWB as in (1)–(2).
Most of these models are known in the literature and we succinctly review them in section 3.
In some of the examples, the presence of a DSI was explicitly acknowledged in the original
papers, while in others it was not, but all these models belong to the category of scenarios
where DSI emerges from the dynamics of matter fields such as the inflaton, extra massive
scalars or gauge 𝑝-forms.

In contrast, in section 4 we consider scenarios of quantum gravity where DSI is a property
of spacetime and we show how the tensor spectrum translates into a SGWB spectral shape
following the spectral shape (1)–(2). After discussing DSI as a spacetime property in quantum
gravity in section 4.1 and reviewing the case of trans-Planckian inflation in section 4.2, in
section 4.3 we develop a DSInvariant model in the so-called multi-fractional theory with
𝑞-derivatives. Although this is not a consistent theory of quantum gravity in its simplest
version [25, 26], it displays all the geometric phenomena we expect in such a theory [26, 27].
While neither the presence of log oscillations in the primordial spectral of this model [28] nor
the average trend of the SGWB [13] are a novelty, here we derive the full, oscillatory SGWB
spectral shape explicitly. Last, in section 5 we discuss the spectral shape (1)–(2) in relation
to the observability of the log modulation by GW interferometers, with special focus on the
Einstein Telescope [29] (similar for CE) but later commenting also on the cases of LISA, and
DECIGO. We find that log oscillations can be detected with one harmonic (𝑙max = 1) if the
signal-to-noise ratio is SNR ≳ 100 for the frequency parameter 𝜔 ∼ 10 and an amplitude
𝐴1 ∼ 0.1. Even more interestingly, the error on the estimate of the amplitudes for higher-order
harmonics does not increase with 𝑙, since the frequency of all these harmonics is an integer
multiple of 𝜔 and this parameter already gets constrained from the 𝑙 = 1 order. Conclusions
are in section 6.

2. Discrete scale invariance in the SGWB

In this section, we argue that the spectral shape (1)–(2) arises in any cosmological model
endowed with a fundamental or an emergent DSI.

The log-oscillatory part (2) of the spectral shape is invariant under a discrete dilation
symmetry in frequency space:

𝐹𝑙 (_𝑚𝜔 𝑓 ) = 𝐹𝑙 ( 𝑓 ) , _𝜔 B e
2𝜋
𝜔 , 𝑚 ∈ Z . (3)

In turn, this translates into a DSI in momentum space as well as a DSI in position space,
𝑥` → _𝜔𝑥

`, all with the same scaling ratio _𝜔. The spectral shape (1)–(2) is not exactly
DSInvariant, since the envelope Ω̄gw( 𝑓 ) does not usually enjoy this symmetry:

Ω̄gw(_𝑚𝜔 𝑓 ) ≠ Ω̄gw( 𝑓 ) . (4)

Nevertheless, any geometry or mechanism with a DSI and capable, at the same time, of
generating a blue-tilted primordial SGWB can eventually end up with a spectral shape with
the modulation factor (2) in the range of future GW interferometers. In fact, in Appendix A
we prove that
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If a SGWB signal displays logarithmic oscillations at a certain frequency range, then it
can always be written as (1)–(2) in that range, regardless of its physical origin.

This powerful but simple result is particularly useful in all cases where the SGWB is computed
numerically from an integral equation but no explicit expression of the spectral shape is
available in closed form.

On the other hand, if the modulation factor in (1) is approximately but not exactly
DSInvariant, the spectral shape (1)–(2) is not the most general one but it is still sufficient at
the scales of GW interferometers. For instance, a generalization of the arguments of sine and
cosine to powers of the logarithm would change the periodicity of the function by a non-integer
factor and, thus, the corresponding scaling ratio. Setting schematically 𝑓∗ = 1,∑︁

𝑠

[𝜔 ln(_𝑚𝜔 𝑓 )]𝑠 =
∑︁
𝑠

(𝜔𝑚 ln_𝜔 + 𝜔 ln 𝑓 )𝑠

=
∑︁
𝑠

(2𝜋𝑚 + 𝜔 ln 𝑓 )𝑠

=
∑︁
𝑠

𝑠∑︁
𝑞=0

(
𝑠

𝑞

)
(2𝜋𝑚)𝑠−𝑞 (𝜔 ln 𝑓 )𝑞, (5)

which would violate (3). However, even if higher-order terms in the sum break DSI, they can
be neglected near the pivot scale 𝑓 ≃ 𝑓∗ ≃ 𝑓0 (i.e., 𝑓 ≈ 1 in 𝑓∗ = 1 units, so that ln 𝑓 ≪ 1)
without affecting the precision reachable by GW interferometers. This would not be the case
if the scalar and tensor spectra had the same quasi-DSI modulation at cosmic microwave
background (CMB) scales, where measurements of temperature fluctuations are extremely
precise and constraints on the amplitude of log oscillations may depend on the details of the
spectral shape. Barring this scenario, for which we have only one example (section 3.2), we
can conclude that the application of the spectral shape (1)–(2) extends also to models where
DSI is softly broken also in the modulation factor

∑
𝑙 𝐹𝑙 .

Having established that the spectral shape (1)–(2) captures any model with exact or very
softly broken DSI, we turn to the question of what physical mechanisms would induce a DSI
in cosmological models. Indeed, the usefulness of (1)–(2) would be very limited or even null
if there were no models or theories displaying this type of symmetry.

In the case of a SGWB of primordial origin, the spectral shape (1)–(2) either arises as
a second-order effect induced by the scalar sector or is directly generated within the tensor
sector. In sections 3 and 4, we will discuss both classes of mechanisms.

3. Models with matter-induced log oscillations

In this section, we first review models where DSI in cosmological spectra emerges as a non-
fundamental property from some mechanism which involves matter fields (scalars and gauge
fields) and also includes the breaking of such symmetry. In general, second-order scalar
perturbations can generate a SGWB [30–34] through a certain convolution of two copies of
the primordial scalar spectrum Ps [35,36]. Moreover, if the scalar spectrum is log-oscillating,
then the resulting GW spectral shape is of the form (1)–(2) with 𝑙max = 2 harmonics and
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the amplitudes 𝐴
c,s
1,2 depending on the other parameters [37]. All the models listed in this

section can produce a scalar-induced log-oscillatory SGWB via this mechanism, while their
tensor spectrum is either standard or strongly suppressed. Therefore, these models fit CMB
data and generate red-tilted spectra and, in particular, their primordial tensor sector remains
directly unreachable by GW interferometers. Models predicting a large tensor-to-scalar ratio
can nevertheless be constrained by present and future GW polarization observations.

The lists below are, approximately, in chronological order of appearance in the literature
and the splitting into inflationary models with sharp features in the potential or with extra
massive fields roughly follows the same classification of [38].

3.1. Single-field inflation with sharp features

All these phenomenological models are characterized by having sharp features in the inflaton
potential, which usually lead to sudden variations in the background expansion.

• Potentials with steps and bumps. Shaping the inflaton potential with one or more sudden
steps [39–42] or bumps [43] generates a log-oscillating scalar spectrum while leaving the
tensor one unaltered. These characteristics could therefore translate to the SGWB only
via induction by second-order scalar fluctuations. The three-point correlation function
is also affected and these models, like others in this and the following lists, produce
non-Gaussianity [40, 43].

• Brane inflation with warp features. A sequence of steps in the warp factor of a Klebanov–
Strassler throat can appear via a Seiberg duality cascade [44] in an AdS5 × 𝑋5 flux
compactification in type-IIB string theory, where 𝑋5 is the throat with a conifold geometry
at the tip [45]. These steps are inherited by the inflaton potential, since the latter depends
on the warp factor, and a log-oscillating scalar power spectrum is the result [45, 46].

• Wiggly whipped inflation. Originally designed to account for BICEP-2’s early alert on
𝐵-mode polarization [47,48], this model was later held as a model of CMB features [49].
This is a single-field scenario where the potential undergoes a first- or a second-order
phase transition from a slow- to a fast-roll phase. Primordial spectra were computed
numerically and are characterized by a log-oscillatory modulation.

3.2. Inflation with spectator fields

In this class of models, there are extra matter fields (scalar or vector) that do not drive inflation
but participate to its dynamics. This dynamics usually induces sudden variations in the
propagation speed of scalar perturbations which eventually results in log oscillations in the
scalar power spectrum.

• Sudden trajectory turns. If the inflaton is the only light scalar among many others and
if it experiences sudden turns in the trajectory in the field space [50], then wiggles of
logarithmic periodicity appear in the scalar primordial spectrum. In the first of such
models [51], the amplitude of the oscillations is roughly ∼ 4[𝜎 (𝐻/𝑚𝜎)2, where 𝐻 = ¤𝑎/𝑎
is the Hubble parameter, 𝑚𝜎 ≫ 𝐻 is the mass of the mode transverse to the trajectory and
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[𝜎 is its second slow-roll parameter. In another group of models [52–63], the trajectory
is considered in the multi-field potential rather than, more abstractly, in the field space.
Here, the multi-field potential has a flat but bending “gorge” surrounded by steep walls.
The inflaton slowly rolls at the flat bottom of the gorge, which is the minimum of the
potential of spectator massive fields (the directions in the field space transverse to the
trajectory). Due to one or more sharp turns of the inflaton trajectory, the massive fields
are suddenly displaced from the minimum and undergo quick oscillations around it. The
initial excitation of the massive fields produces linear oscillations in the scalar spectrum
and in the bispectrum, while the resonance triggered after the initial response produces
logarithmic oscillations in a certain frequency range. In the two-field case (inflaton 𝜙

plus a massive scalar 𝜎), if the background accelerates fast (extreme slow-roll regime)
and for certain potentials 𝑉 (𝜙, 𝜎) = 𝑉1(𝜙) +𝑉2(𝜎), the scalar spectrum is modulated by
sines and cosines of a logarithm [52, 53, 56, 58, 59] and the resulting oscillations have a
high frequency 2𝑚𝜎/𝐻 ≫ 1 and, contrary to most of the other case, zero average (no
constant term 1 in the harmonic series).

• Axion monodromy inflation. In axion monodromy inflation, another cosmological
scenario arising in flux compactification in string theory, the amplitude and frequency
of the log oscillations are determined by the expectation values of moduli fields. The
power spectra contain powers of the logarithm ∼ cos[Φ + ln(𝑘/𝑘0) + ln2(𝑘/𝑘0) + . . . ]
(where Φ is a phase), as in (5) [64, 65]. Higher-order terms can be neglected near
the pivot scale 𝑘 ≃ 𝑘0, but only starting from the fourth power in the case of CMB
frequencies. Therefore, DSI in momentum or frequency space is only approximate here
and the single-harmonic spectral shape (6) below (with 𝐴s

1 = 0) would be more suitable
at higher (interferometer) frequencies. Recently, the sharp-turn scenario described above
has been realized in axion monodromy inflation [63]. In any case, the main effect is
confined to the scalar sector, while log oscillations in the tensor spectrum are strongly
suppressed. Therefore, in this model only a scalar-induced SGWB could be observable
as far as GW cosmology is concerned.

• Fluxes in non-minimally coupled gravity. DSI generated by fluxes is also a central
ingredient of a different model outlined in [28], where one has a dynamical soft breaking
of continuous scale invariance 𝑥` → _𝑥`, _ ∈ R, a sub-symmetry of conformal-invariant
field theories. In this case, the scaling ratio _ is the expectation value of a field. In
a setting similar to flux compactification in low-energy string theory [66], one could
consider a 𝑝-form 𝐴𝑝 on a compact subspace Γ𝑝+1, which produces a quantized flux∫
Γ𝑝+1

d𝐴𝑝 = 𝑛𝑞, where 𝑞 C 2𝜋/𝜔 is the 𝑝-form magnetic charge defining a parameter
𝜔 = 2𝜋/𝑞. An effective action 𝑆[𝑔`a, 𝐴𝑝] characterized by a conformally coupled
metric exp(2

∫
d𝐴𝑝) 𝑔`a is associated with a coordinate dilation with arbitrary scaling

ratio _ ∼ exp(
∫

d𝐴𝑝). However, upon quantizing the flux, one forces the system to a
discretized conformal coupling _2𝑛

𝜔 𝑔`a, where _𝜔 is given in (3). Then, a DSI arises
dynamically from fluxes. In order to obtain a superposition of harmonics with different
frequencies, one can extend this mechanism to different 𝑝-forms with different charges
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𝑞. Details of this scenario have not been studied yet.
• Axion Chern–Simons gravity. In this model motivated by string-theory compactifications,

the inflaton is one of two axions and its potential is modulated by linear oscillations in
the field [67]. The resulting scalar spectrum, to which also the other axion contributes
with its dynamics, is log-oscillatory.

• Complex Lifshitz scalars. Lifshitz scalars are such that the spatial-derivative operator
in the kinetic terms is of higher order than the time-derivative one. In this class of
models, one considers a complex Lifshitz scalar field 𝜙 with a space-dependent potential
𝑉 (𝒙, 𝜙). The system undergoes a universal phase transition between a continuous and a
discrete scale invariance where the DSI phase is characterized by an infinite set of bound
states [68]. Just like the models described above, here DSI is generated dynamically from
matter fields, without any underlying spacetime hierarchical structure. The inflationary
spectra for this model have not been calculated yet and it is not even clear that a Lifshitz
scalar can sustain inflation by itself, since solutions are manifestly space-dependent. A
possibility is to embed 𝜙 in a multi-field configuration where another scalar plays the role
of the inflation, in which case we would fall into the category of models of section 3.2.
Then, depending on how the symmetries of the Lifshitz scalar carry over to cosmological
observables, the appearance of broken DSI in the primordial spectra is expected [28].

4. Models with spacetime log oscillations

In this section, we consider scenarios of quantum gravity where DSI is an intrinsic property of
spacetime rather than something emerging from matter fields or from the interaction between
matter and gravity. We also derive explicitly the spectral shape (1)–(2) for a model living in a
fractal spacetime.

Contrary to the models of section 3, those of this section can produce both a scalar- and
a tensor-induced primordial SGWB. In both cases, the primordial (respectively, scalar and
tensor) spectrum has the same symmetry properties as the spectral shape. To make this point,
consider the direct-generation mechanism and a tensor spectrum with only one harmonic,
𝑙max = 1:

Pt(𝑘) = P̄t(𝑘)
[
1 + 𝐴c

1 cos
(
𝜔 ln

𝑘

𝑘∗

)
+ 𝐴s

1 sin
(
𝜔 ln

𝑘

𝑘∗

)]
, (6)

where 𝑘 is the comoving wave-number, 𝑘∗ is some characteristic momentum scale and the
prefactor P̄t(𝑘) depends on the model. To extract the spectral shape of the SGWB from the
power spectrum (6), we recall the formula

Ωgw( 𝑓 ) =
𝑘2

12𝑎2
0𝐻

2
0
Pt(𝑘) T 2(𝑘, 𝜏0)

���
𝑘=

𝑓

2𝜋

, (7)

where the subscript 0 indicates quantities evaluated at the present time (one can set 𝑎0 = 1,
while 𝐻0 is the Hubble constant today) and T (𝑘, 𝜏0) is the transfer function encoding how
the primordial spectrum evolved after horizon crossing until today. Its specific form depends
on the history of the universe [69, 70] and it can be simplified in the inflationary scenario of
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instantaneous reheating [71, 72]. Plugging (6) into (7), we obtain (1)–(2) with 𝑙max = 1 and
the envelope

Ω̄gw( 𝑓 ) =
𝑘2

12𝑎2
0𝐻

2
0
P̄t(𝑘) T 2(𝑘, 𝜏0)

���
𝑘=

𝑓

2𝜋

. (8)

This example illustrates the typical derivation of the SGWB spectral shape from the primordial
tensor spectrum predicted by a cosmological model of the early universe and it is immediately
extendable to the multi-harmonic case (2). In the presence of two or more harmonics, the
pattern of peaks and troughs becomes more complicated and, in some case, it can lead to
log-periodic spikes [28].

4.1. DSI in quantum gravity

Discrete scale invariance is a landmark feature in chaotic, critical and hierarchical systems [73]
as well as in deterministic fractals where the scaling ratio _𝜔 fixes how copies of the fractal
are replicated at different scales [74–78]. In turn, DSI can be interpreted as the manifestation
of a geometry with a complex dimension [74, 78] whose imaginary part is identified with the
parameter 𝜔 [28].

Fractal spacetimes emerge in theories of quantum gravity as the result of, so to speak,
the deformation of classical geometries by quantum mechanics [79–83] and they can be
catalogued according to their geometric properties [10, 26, 84–89]. However, in most cases
the “fractal” nature of these effective spacetimes is limited to a transition from an ultraviolet
(UV, short-scale) geometry with exotic properties to an infrared (IR, large-scale) standard one,
thus circumscribing the effects beyond Einstein gravity to very small scales or, in the most
optimistic cases, requiring the cumulative enhancement of such effects via the propagation of
GWs through cosmologically large distances [9,10]. Such a possibility relies on the existence
of a non-monotonic behaviour of the spectral dimension at intermediate scales, a feature
present only in very few models. Hints that such a feature could happen in certain kinematical
states in loop quantum gravity, spin foams and group field theory [90] have been confirmed
only recently [91].

In contrast, DSI crosses the usual UV/IR divide characterizing other quantum-gravity
effects and manifests itself at all scales. This happens because locally (accordingly to the
frequency 𝜔 and the dilation factor _𝜔 in (3)) DSI replicates the same structure over and over
again at arbitrarily small and arbitrarily large distances, even if the symmetry itself is explicitly
broken in the IR. In this sense, DSI is not confined to Planckian scales or frequencies. The
magnitude of the effect (amplitude of the log oscillations) may be small, but it is everywhere.
However, it is still unclear where DSI makes its appearance in the landscape of theories of
quantum gravity.

To summarize, we have two notions of “fractality:” one meant as a change of scaling
of correlation functions across different scales and one meant as a property of self-similarity.
The first is well established in quantum gravity and corresponds to what mathematicians call
random fractals. The second is only beginning to pop up in quantum gravity and corresponds
to deterministic fractals. There are reasons to believe that the search for DSI in quantum
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gravity will eventually yield positive results:

(i) DSI or, more precisely, quasi-DSI as formulated in this paper does not violate the long-
standing conjecture that a theory of quantum gravity should not possess exact global
symmetries [92–94], either continuous or discrete, because it is broken explicitly: in the
case of cosmological primordial spectra, by the envelope function. Thus, DSI is on the
“safe side” regardless of whether the above conjecture holds true universally or only for
certain quantum gravities such as those formulated within string theory or the AdS/CFT
correspondence [93, 94].

(ii) DSI is a natural outcome of the most general factorized measure of spacetime
with anomalous scaling [86]. Moreover, random multi-fractals are generated from
deterministic multi-fractals by a randomization of the scaling ratios of the latter. In the
case of quantum gravity, this randomization process could be originated from the quantum
fluctuations of the fundamental building blocks of spacetimes, which would explain why
anomalous scaling (the geometric behaviour typical of random multi-fractals) is seen in
all theories where the gravitational field is quantized. Therefore, at least in some cases,
this typical behaviour with a UV/IR divide may have a self-similar substratum.

(iii) Connected with the last point, it is altogether possible that spacetimes effectively emerging
from a fundamental geometric or pre-geometric framework display a deterministic fractal
structure (hence a DSI) at certain scales [26, 87]. So far, evidence is scant but building
up. For example, in ongoing investigations in spin foams, there are not yet any signs for
a complex dimension but this is mostly because one is still limiting explicit calculations
and simulations to the semi-classical (large-spin) approximation of spin foams [95] or
due to other approximations and assumptions [91]. Complexity is mostly avoided in this
regime but it is indeed expected to arise from the measure in the spin foam [96].

While theoretical efforts to find DSI are taking place in quantum gravity, it can be interesting
to explore its phenomenological consequences. In section 4.2, we review phenomenological
models of inflation with trans-Planckian physics, while in section 4.3 we derive the spectral
shape (1)–(2) from a cosmological model with an explicit DSInvariant modulation.

4.2. Trans-Planckian inflation

Logarithmic oscillations arise in slow-roll inflationary models with a UV energy cut-off, a
modified dispersion relation and/or a vacuum choice different from Bunch–Davies [97–102].
For example, a non-standard vacuum choice (induced or not by a modified dispersion relation)
can lead to a normalization of the solution of the Mukhanov–Sasaki equation of cosmological
perturbations with complex exponents |𝜏 |i𝜔 = exp(i𝜔 ln |𝜏 |), where 𝜏 =

∫
d𝑡/𝑎(𝑡) is

conformal time and 𝑎(𝑡) is the background scale factor in proper time. Reality of the
solution linearly combines such exponents into trigonometric functions of a logarithm,
|𝜏 |i𝜔±|𝜏 |−i𝜔 ∼ cos, sin(𝜔 ln |𝜏 |), which eventually appear in the power spectrum after replacing
conformal time 𝜏 = 𝜏(𝑘) as a function of the comoving wave-number 𝑘 . In general, these
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models generate a tensor power spectrum

Pt(𝑘) = P̄t(𝑘)
[
1 + 𝐴c

1(𝑘) cos 𝐵(𝑘) + 𝐴s
1(𝑘) sin 𝐵(𝑘)

]
, (9)

where

P̄t(𝑘) =
8
𝑀2

Pl

[
𝐻 (𝑘)

2𝜋

]2
= Āt

(
𝑘

𝑘0

)𝑛t

, (10)

is the standard spectrum in Einstein gravity to lowest slow-roll order, 𝑀Pl = (8𝜋𝐺)−1/2 is the
reduced Planck mass and 𝐻 is the Hubble parameter evaluated at horizon crossing. In the
second equality, we parametrized P̄t(𝑘) in terms of the tensor amplitude Āt = P̄t(𝑘0) and the
tensor spectral index 𝑛t. A similar expression holds also for the primordial scalar spectrum
Ps(𝑘).

In particular, it is possible to get spectra with 𝐵(𝑘) ∝ ln 𝑘 and exactly or approximately
constant 𝐴c,s

1 from the choice of non-standard vacua with a UV cut-off [98–102].1 This leads
to (6), where𝜔 is a model-dependent constant and 𝑘∗ = 𝑘0 is the pivot scale of the observation.
As shown in section 2, the spectral shape Ωgw( 𝑓 ) is indeed (1)–(2) with 𝑙max = 1 in the case
of a SGWB directly generated by the tensor spectrum (Ωgw has only as many harmonics as in
Pt, i.e., one), or 𝑙max = 2 in the case it is generated by second-order scalar perturbations.

Let 𝜖 = − ¤𝐻/𝐻2 be the first slow-roll parameter and 𝑀 = 𝑂 (102𝐻) a high-energy
mass scale at which trans-Planckian effects become important [101, 102]. The parameter
space ranges from high frequencies 𝜔 = 𝑂 (𝜖−1) = 𝑂 (102) [97] or 𝜔 = 𝑀/𝐻 = 𝑂 (102)
[106] to frequencies 𝜔 = 𝜖/(𝐻/𝑀) = 𝑂 (1) [101, 102] but very low amplitudes 𝐴c

1 =

(𝐻/𝑀)3𝜖 = 𝑂 (10−8) and 𝐴s
1 = (𝐻/𝑀)3 = 𝑂 (10−6) or 𝐴c

1 = (𝐻/𝑀)𝜖 = 𝑂 (10−3) and
𝐴s

1 = 𝐻/𝑀 = 𝑂 (10−2).
None of these trans-Planckian models can be verified by present and next-generation

collaborations dedicated to GW astronomy. In fact, not only do these tensor amplitudes
become exceptionally low at the frequency scales of GW interferometers, but also, in general,
the primordial tensor spectrum is red tilted, i.e., 𝑛t < 0, and cannot generate a SGWB reaching
the sensitivity curve of such instruments.

4.3. Multi-fractional inflation

A concrete early-universe model with a spacetime broken DSI is multi-scale inflation. This
single-field model of early-time acceleration assumes that spacetime geometry changes with
the probed scale, an effect typically found in theories of quantum gravity as pointed out above.
A class of theories called multi-fractional spacetimes encode this feature at a fundamental
level as a non-trivial integration measure and modified derivative operators in the action [26].
The inflationary spectra of one of these theories, specifically with so-called 𝑞-derivatives, have
been worked out explicitly [28, 107, 108]. In particular, the tensor spectrum Pt(𝑘) features
logarithmic oscillations coming from a DSI of the measure in a certain regime of times and
1 In other cases, the normalization factors are phases combined into a trigonometric function with linear
oscillations, 𝐵(𝑘) ∼ 𝑘 [97,101–104]. Oscillations are generated also when integrating out massive fields during
inflation but they are not a general feature, since they depend on the choice of UV cut-off [105].
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distances. In contrast with the models reviewed in sections 3 and 4.2, here DSI emerges from
the fact that spacetime itself is endowed with one or more characteristic scales. Then, log
oscillations affect the scalar and the tensor spectrum alike.

In this model, the primordial spectrum Pt(𝑘) was calculated in [13, 108]. Since the
cosmic evolution is standard after inflation, the transfer function T is approximately constant
at the frequencies of GW interferometers and the spectral shape is simply proportional to
Pt [ 𝑓 /(2𝜋)]. Therefore,

Ωgw( 𝑓 ) = Ωgw∗

[
𝑓 ( 𝑓 )
𝑓0

] �̃�t

, (11)

𝑓 ( 𝑓 ) = 𝑓

{
1 + 1

|𝛼 |

(
𝑓

𝑓∗

)1−𝛼
[
𝐵0 +

+∞∑︁
𝑙=1

�̃�𝑙 ( 𝑓 )
]
+ . . .

}−1

, (12)

where Ωgw∗ is a constant (notice that Ωgw∗ ≠ Ωgw( 𝑓0)), �̃�t is the tensor index of the same
inflationary model corresponding to an ordinary spacetime and �̃�𝑙 ( 𝑓 ) is given by (2) with
different amplitudes 𝐵c,s

𝑙
. Note that a pattern in time opposite with respect to (12) holds, since

the variable 𝑡 (𝑡) = 1/ 𝑓 (1/𝑡) is conjugate to 𝑓 ( 𝑓 ). The ellipsis indicates other terms of the
same functional form as the one showed but with different values of the parameters 𝛼, 𝑓∗,
𝐵0, and so on. Regarding the parameters, 𝛼 is real and related to the Hausdorff dimension
of spacetime, 𝐵0 = 0, 1 and the oscillation frequency 𝜔 = 2𝜋𝛼/ln N has an upper bound at
N = 2, where N is the number of copies of the underlying fractal (i.e., the fractal spacetime is
given by the union of N copies of itself rescaled by a factor _𝜔). Although it is not a prediction
of the theory, it has been argued that oscillations are usually damped and the amplitudes are
parametrized by and exponential and/or a power-law decay [28]:

𝐵c
𝑙 = 𝑎c

𝑙

e−𝛾𝑙

𝑙𝑢
, 𝐵s

𝑙 = 𝑎s
𝑙

e−𝛾𝑙

𝑙𝑢
, (13)

where 𝛾 > 0 and 𝑢 > 0. If the amplitudes decay, then the approximation 𝑙max = 1 is acceptable,
otherwise one should take more harmonics into account. A simple Ansatz is to consider several
harmonics with constant amplitudes, e.g., 𝑙max = 10 and 𝐵c

𝑙
= 𝐵s

𝑙
= const.

Ignoring log oscillations, (11) reduces to a double power law,

Ωgw( 𝑓 ) ≃ Ωgw∗

(
𝑓∗
𝑓0

) �̃�t


1(
𝑓

𝑓∗

)−1
+ 𝐵0

|𝛼 |

(
𝑓

𝑓∗

)−𝛼 
�̃�t

, (14)

which was studied in [13]. However, here we want to make a different approximation and
retain the log-periodic pattern. At the high frequencies typical of present- and next-generation
GW interferometers ( 𝑓∗ ≪ 𝑓0), the power-law term in (12) dominates:

Ωgw( 𝑓 ) ≃ Ω̃gw∗

(
𝑓

𝑓0

)𝛼�̃�t
[
𝐵0 +

+∞∑︁
𝑛=1

�̃�𝑛 ( 𝑓 )
]−�̃�t

, (15)

where Ω̃gw∗ = |𝛼 |Ωgw∗( 𝑓0/ 𝑓∗)𝛼−1 and �̃�t is small and negative as in standard inflation. The
power of log oscillations can be approximated to a linear dependence on the oscillations
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themselves, since these are bounded from above and from below and the amplitudes 𝐵c
𝑙

and
𝐵s
𝑙

cannot be too large lest they generate excessively sharply peaked features. If |𝐵c,s
𝑙
| ≲ 1 for

all 𝑙, then for 𝐵0 = 1 𝑓 𝛼
(
1 +

∑︁
𝑙

𝐵c
𝑙 cos ln 𝑓 𝑙𝜔 +

∑︁
𝑙

𝐵s
𝑙 sin ln 𝑓 𝑙𝜔

)−1
�̃�t

≃ 𝑓 𝛼�̃�t (1 + 𝐴c
1 cos ln 𝑓 𝜔 + 𝐴s

1 sin ln 𝑓 𝜔 + . . . ) , (16)
𝐴c

1 = −�̃�t𝐵
c
1 , 𝐴s

1 = −�̃�t𝐵
s
1 , (17)

thus reproducing (2). Since the theoretical spectral index is small, �̃�t ≪ 1, so are the amplitudes
𝐴c

1 and 𝐴s
2.

In cosmological applications to date, values of 𝛼 < 0 have been considered in order to
get a blue-tilted spectrum at frequencies higher than the CMB range [13]. In that case, the
predicted amplitude of the SGWB intersects the DECIGO sensitivity curve but does not reach
the sensitivity curves of LISA and ET for |𝛼 | = 𝑂 (1) [13]. We checked that the SGWB of
this model can be lifted up to the LISA and ET ranges provided 𝛼 ≲ −30. These values
of 𝛼 are not welcome theoretically because the Hausdorff dimension of spacetime (i.e., the
scaling of 4-volumes with their linear size) is 𝑑h = 𝛼0 + 3𝛼 and it must be positive definite.
Large negative values of 𝛼 would imply that the Hausdorff dimension of time 𝛼0 be very
large at the frequency scale 𝑓∗ where the 𝛼 power dominates, which is not a natural geometric
configuration.

For phenomenological purposes, one could get along with this possibility and explore its
consequences. However, it is difficult to support inflation with strongly negative values of 𝛼,
in which case the observed tensor index 𝑛t = 𝛼�̃�t would be positive and large. The reason
is that the observed scalar spectral index 𝑛s − 1 = (�̃�s − 1)𝛼 [13, 108] can be negative and
small only if the scalar index �̃�s−1 of the corresponding inflationary model in Einstein gravity
is positive and very small. Although there may be models with these characteristics (e.g.,
multi-field inflation), they could entail a moderate level of fine tuning.

Therefore, it is more natural to consider the case where the logarithmically modulated
power-law term in (12) relevant at the frequencies of GW interferometers is not the same
one important at CMB scales, which would then be relegated to the ellipsis. As we
said, the latter stands for other powers, modulated by log oscillations, with different scales
𝑓∗ → 𝑓∗∗, . . ., exponents 𝛼 → 𝛼∗∗, · · · , frequency parameters 𝜔 → 𝜔∗∗, · · · and amplitudes
𝐴

c,s
𝑙

→ 𝐴
c,s∗∗
𝑙

, · · · . These extra powers ( 𝑓 / 𝑓∗∗)1−𝛼∗∗ , · · · , exist in multi-fractal geometries with
three or more inequivalent regimes, separated by two or more length (energy, frequency) scales.
In this case, assuming the SGWB to be steep enough in its rise in the intermediate regime with
a negative 𝛼∗∗ < −30, then 𝛼 in (12) can even be positive and the spectral shape still cross the
LISA or ET sensitivity curve. Then, none of the constraints coming from the CMB [108,109]
apply to the parameters 𝛼 and 𝑓∗ or to the amplitudes 𝐴

c,s
𝑙

of the log oscillations. At any rate,
we will see that log-periodic features are detectable also for amplitudes smaller than the CMB
upper bound 𝐴

c,s
𝑙

< 0.4 [108].
This conclusion holds for any cosmological model coming from quantum gravity with an
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intrinsic DSI: If there are at least three characteristic spacetime scales such that the intermediate
one is associated with a negative anomalous scaling, then one can avoid CMB constraints on
log oscillations and use the spectral shape (1)–(2) just at GW interferometer frequencies.

5. Prospect for detection in next-generation GW interferometers

Having motivated the spectral shape given by equations (1)–(2) on general grounds in section
2 and with several general mechanisms illustrated by the examples in sections 3 and 4, we now
explore the detectability of log oscillations using next-generation GW interferometers. The
search for an SGWB is performed by cross-correlating signals from multiple interferometers.
For a given set of noise spectra 𝑆𝐼,𝐽 ( 𝑓 ) from different interferometers 𝐼 and 𝐽, the expected
signal-to-noise ratio (SNR) is given by [110]

SNR2 =

(
3𝐻2

0
10𝜋2

)2

2𝑇obs
∑︁
𝐼,𝐽

∫ +∞

0
d 𝑓

|𝛾𝐼𝐽 ( 𝑓 ) |2Ωgw( 𝑓 )2

𝑓 6𝑆𝐼 ( 𝑓 )𝑆𝐽 ( 𝑓 )
, (18)

where 𝑇obs is the observation time, 𝛾𝐼𝐽 is the overlap reduction function, 𝐻0 =

100ℎ km s−1Mpc−1 and we adopt the value from the Planck satellite, ℎ = 0.67 [111].
The overlap reduction function is given by integrating the contributions from all directions,
obtained using the detector responses 𝐹+

𝐼,𝐽
and 𝐹×

𝐼,𝐽
:

𝛾𝐼𝐽 ( 𝑓 ) B
5

8𝜋

∫
d�̂� (𝐹+

𝐼 𝐹
+
𝐽 + 𝐹×

𝐼 𝐹
×
𝐽 ) e−2𝜋i 𝑓 �̂�·(𝒙𝐼−𝒙𝐽 ) , (19)

where �̂� is the solid angle and 𝒙𝐼,𝐽 denote the positions of the detectors.
The Fisher matrix F𝑖 𝑗 is a widely used tool to forecast the performance of future

experiments. Under the assumption that the likelihood function can be well approximated
by a Gaussian distribution near the maximum likelihood estimate of the parameters, the
inverse of the Fisher matrix provides a lower bound on the expected error 𝜎𝑝𝑖 =

√︁
(F −1)𝑖𝑖. For

the cross-correlation analysis of a GW data set, the Fisher matrix is given by [112,113]

F𝑖 𝑗 =
(

3𝐻2
0

10𝜋2

)2

2𝑇obs
∑︁
𝐼,𝐽

∫ +∞

0
d 𝑓

|𝛾𝐼𝐽 ( 𝑓 ) |2𝜕𝑝𝑖Ωgw( 𝑓 )𝜕𝑝 𝑗
Ωgw( 𝑓 )

𝑓 6𝑆𝐼 ( 𝑓 )𝑆𝐽 ( 𝑓 )
. (20)

This formula may be slightly different for different observatories such as LISA and ET (whose
design is still in consultation [114]), where the auto-correlation method is planned for the
search of a SGWB. However, the actual formula is similar and all the arguments in the
following subsections hold for all these cases.

Using this formalism, we can estimate the expected error for a given sensitivity curve. In
the following, to provide an example, we discuss the constraining power using the sensitivity
of the ET. In figure 1, we show examples of the SGWB signal (for 𝑙max = 1 and 3) and the
ET sensitivity, plotted with the criterion of having SNR = 1 for each bin Δ ln 𝑓 = 1/10. We
assume a 3-year observation with the sensitivity given by the ET-D curve taken from [115].
For simplicity, we assume that the overlap reduction function is |𝛾𝐼𝐽 | = 1, which is the case for
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co-located and co-aligned L-shaped detectors. The result simply rescales by |𝛾𝐼𝐽 | = 3/8 for
the triangular configuration, where the detectors form a V-shape with arm angles of 60 degrees
and a separation of 120 degrees [116]. In the context of ET, it is a reasonable approximation
to consider |𝛾𝐼𝐽 ( 𝑓 ) | = const for frequencies of interest, 𝑓 < 103 Hz.
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Figure 1. Examples of a SGWB spectrum with logarithmic oscillations, displayed with the
sensitivity curve of ET. The red curve depicts the 𝑙max = 1 case, plotted using equation (21)
with Ω0 = 10−11, 𝑛t = 0.5, 𝜔 = 10, 𝐴1 = 0.1, Φ1 = 0. The black curve represents the 𝑙max = 3
case, plotted using equation (23) with Ω0 = 10−11, 𝑛t = 0, 𝜔 = 10, 𝐴1 = 0.1, Φ1 = 0, 𝐴2 = 0.1,
Φ2 = 0, 𝐴3 = 0.1, and Φ3 = 0. The pivot scale is set at 𝑓∗ = 10Hz.

5.1. One harmonic

We start with the minimal 𝑙max = 1 case assuming a power-law form of the basic SGWB shape.
In this case, the generic form of the SGWB spectral amplitude (1) can be written as

Ωgw( 𝑓 ) = Ω0

(
𝑓

𝑓∗

)𝑛t [
1 + 𝐴1 sin

(
𝜔 ln

𝑓

𝑓∗
+Φ1

)]
. (21)

Note that we use the oscillation amplitude 𝐴1 and the phase Φ1, rather than two separate
oscillation amplitudes 𝐴c

1 and 𝐴s
1 for cosine and sine. This parametrization may have

advantages in computation time when performing searches in the parameter space. Specifically,
the prior range of the phase can be limited to −𝜋 ⩽ Φ1 ⩽ 𝜋, while we typically want to explore
a large parameter space for the oscillation amplitude ranging in log scale. Having a flat
prior on Φ1 with the parametrization (21) means that we assign less importance to fine-tuned
modulations such as in the cases where 𝐴c

1 ≪ 𝐴s
1 or 𝐴c

1 ≫ 𝐴s
1.

In the 𝑙max = 1 case, we have 5 free parameters to determine in parameter estimation,
namely, 𝑝𝑖 = [Ω0, 𝑛t, 𝜔, 𝐴1,Φ1]. The pivot frequency 𝑓∗ can be taken to be arbitrary without
loss of generality (a change in 𝑓∗ can be absorbed by changes in the normalization amplitude
Ω0 and the oscillation phase Φ1). Here we take 𝑓∗ = 10 Hz to explore the case of ET, as it is
convenient to set it around the frequency band of the observatory.
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Figure 2. Parameter dependence of the expected errors 𝜎. The red curves describe errors
on the parameters that determine the envelope of the spectrum, such as the normalization
amplitude Ω0 (red solid) and the tilt 𝑛t (red dashed). The black curves correspond to the errors
on oscillation parameters, such as the oscillation frequency 𝜔 (black dashed), the oscillation
amplitude 𝐴1 (black solid) and the oscillation phase Φ1 (black dotted). Each figure shows the
errors by varying one parameter, while the other parameter values are fixed at Ω0 = 10−11,
𝑛t = 0, 𝜔 = 10, 𝐴1 = 0.1 and Φ1 = 0. For reference, we also show the 1/SNR curve (blue
dot-dashed).

In figure 2, we present the parameter dependence of the expected errors assuming the
ET sensitivity. For parameters that could vary over several orders of magnitude, we express
the errors as relative errors, i.e., errors on the logarithm of the value, denoted as 𝜎ln 𝑝𝑖 . This
allows us to roughly set a common threshold of 𝜎 < 1 for all parameters to judge whether they
can be constrained by data. When we require an accurate determination of the parameters, we
may set a lower threshold 𝜎 < 0.1.

The top panels depict the dependence on parameters that determine the envelope of the
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spectrum, namely the normalization amplitudeΩ0 and the tilt 𝑛t. We observe a trend where the
errors for all parameters scale as ∝ 1/Ω0. This is reasonable, since parameter determination
becomes more straightforward for a SGWB signal with higher SNR. The dependence on 𝑛t
exhibits a non-trivial shape, reflecting the sensitivity curve of the observatory and roughly
following a trend ∝ 1/SNR, as shown by the inclusion of the 1/SNR curve for reference.

The bottom panels illustrate the dependence on oscillation parameters. We observe that
the error on ln𝜔 decreases for high-frequency oscillations, and the errors on all oscillation
parameters improve with larger oscillation amplitude. This can be interpreted as the fact that
having more oscillations within the observation frequency band as well as a larger oscillation
amplitude help to determine the oscillation parameters more precisely. We present an analytic
estimation for understanding these parameter dependencies in Appendix B. Additionally, we
find that the determination of the parameters Ω0 and 𝑛t for the envelope remains unaffected by
changes in the oscillation parameters. However, note that this is not the case when 𝜔 < 10,
since for small 𝜔 frequencies the oscillation period becomes comparable with, or larger than,
the ET frequency sensitivity band. In such cases, we find a strong degeneracy among the
parameters and the Fisher method fails to provide accurate estimates.

Finally, while we presented this example assuming the sensitivity of ET, the above trends
should hold for other observatories as well. Generally speaking, 𝜎 ∝ 1/SNR so the higher
the signal-to-noise ratio, the smaller the magnitude of the errors for all parameters. The
SNR is mainly determined by the sensitivity curve of the observatory and the envelope of
the SGWB spectrum, controlled by Ω0 and 𝑛t. Thus, the general statement we can make
for all interferometer-type observatories is that log oscillations can be detected if the SGWB
detection is made with SNR ≳ 100 for 𝜔 ∼ 10 and 𝐴1 ∼ 0.1. Another generic trend is that
the errors on oscillation parameters scale as 𝜎ln𝜔 ∝ 1/(𝐴1𝜔), 𝜎ln 𝐴1 ∝ 1/𝐴1 and 𝜎Φ1 ∝ 1/𝐴1,
as we confirm analytically in Appendix B. Furthermore, even though we parametrized the
SGWB envelope using the power-law form, this argument can be extended to any envelope
modulated by small oscillations.

The only difference that could arise from changing observatory is the accessible range
of 𝜔. There exists an experimental upper bound on 𝜔 due to the frequency resolution of the
instrument. Given a frequency resolution Δ ln 𝑓 in log space, the observatory can resolve the
log-oscillatory signal when

𝜔 <
1

Δ ln 𝑓
=

𝑓

Δ 𝑓
. (22)

The frequency resolution is given by Δ 𝑓 = 1/𝑇obs = 𝑓s/𝑁 , where 𝑓s is the sampling frequency
of the experiment, and 𝑁 is the number of data points. For example, in the LVK analysis [117],
the sampling frequency is 16384 Hz and the down-sampled data of 𝑓s = 4096 Hz is used for
the stochastic analysis. One year of data cannot be realistically analyzed as a whole because
of the computation power needed to process data points of order of 𝑁 = 𝑓s𝑇obs ∼ 1011, as well
as because of disruptions of the data flow due, e.g., to glitch noise or run breaks. Therefore,
the data are usually split into segments of 192 seconds, which gives a frequency resolution of
Δ 𝑓 ≈ 0.0052 Hz further coarse-grained to Δ 𝑓 = 1/32 ≈ 0.031 Hz. This yields a resolution
of Δ ln 𝑓 ≈ 1/320 around 10 Hz for the coarse-grained data. A higher resolution could be
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Experiment Peak sensitivity frequency Ω0 𝑛t 𝜔

ET/CE 1−10 Hz ≳ 10−11 ≳ 0.28 10 < 𝜔 < 103 (109)
DECIGO 0.1−1 Hz ≳ 10−15 ≳ 0.06 10 < 𝜔 < ? (107)
LISA 10−3−10−2 Hz ≳ 10−11 ≳ 0.34 10 < 𝜔 < 104 (105)

Table 1. The table shows the minimum SGWB amplitude Ω0 required to detect log oscillations
with an amplitude 𝐴1 ∼ 0.1 as well as the value of the minimal tilt 𝑛t needed to achieve such
amplitude for a SGWB having the current upper-bound value 𝑟 = 0.036 of the tensor-to-scalar
ratio at the CMB scale 𝑘 = 0.05 Mpc−1. The value of the normalization amplitude Ω0 is
estimated assuming that SNR ≳ 100 is needed for a precise determination of the oscillation
parameters with 𝜎 ∼ 0.1. Additionally, we provide the rough range of 𝜔 accessible by the
instrument. In brackets, we put the ideal upper bound achieved if one analyzed the data taking
the entire observation time as a whole (see the main text for details).

achieved by taking the segment size longer without applying coarse-graining. In principle,
Δ ln 𝑓 = 𝑂 (10−9) around 10 Hz can be achieved if we can analyze one year of data at once.
A similar argument would hold for ET and we would have Δ ln 𝑓 = 𝑂 (10−3) unless the
computation power and data analysis techniques were dramatically improved by the time of
the observation run. In summary, the range of observable 𝜔 values is constrained by factors
such as the data’s maximum duration after being affected by noise and run interruptions, as
well as the computational time required for processing numerous data points. Nevertheless,
a frequency resolution of Δ ln 𝑓 = 𝑂 (10−3) is good enough compared to the typical width of
the oscillations in log space.

In the context of LISA, the mission aims to explore a lower frequency band around ∼ 10−3

Hz. Due to periodic antenna re-pointing and operational interruptions, the data will likely be
divided into segments of approximately 10 days each [118]. This means that, without coarse-
graining, achieving a resolution of Δ ln 𝑓 = 𝑂 (10−4) around 10−3 Hz should be feasible. LISA
is designed with a much lower sampling frequency of 𝑓s = 3.3 Hz, resulting in a total data point
count of approximately 𝑁 ≈ 3 × 108. Consequently, this set-up should be more manageable
in terms of the required computational power.

On the other hand, there is also a lower bound on 𝜔. As mentioned above, the oscillation
effect starts to degenerate with the entire spectral shape when 𝜔 is too small. To avoid the
degeneracy, we need at least one oscillation cycle within the sensitivity band. This requirement
strongly depends on the shape of the sensitivity curve and on the amplitude of the SGWB,
as the observable bandwidth tends to widen when the SGWB signal has a high amplitude.
Roughly speaking, we need 𝜔 > 10 to have enough oscillation cycles inside the sensitivity
band. This condition would be relaxed when Ω0 is higher.

In table 1, we summarize the prospect for future GW observatories. The table contains
the target frequency of each observatory, the required amplitude for the determination of the
oscillation parameters when 𝐴1 ∼ 0.1, the value of the minimal tilt 𝑛t needed to achieve such
amplitude for a SGWB having the current upper-bound value 𝑟 = 0.036 of the tensor-to-scalar
ratio at the CMB scale 𝑘 = 0.05 Mpc−1 [119], and the explorable range of 𝜔.

Note that, from what said at the end of section 4.3, if we assume the presence of an
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intermediate stage between CMB and interferometer scales, we do not have to take into account
CMB constraints on the oscillation amplitudes (which, at least for the case of multi-fractional
inflation, does not reduce the parameter ranges at high frequencies anyway).

5.2. Multiple harmonics

Now we evaluate the case where we include higher harmonics and the SGWB spectral
amplitude (1) gets more terms as

Ωgw( 𝑓 ) = Ω0

(
𝑓

𝑓∗

)𝑛t [
1 + 𝐴1 sin

(
𝜔 ln

𝑓

𝑓∗
+Φ1

)
+𝐴2 sin

(
2𝜔 ln

𝑓

𝑓∗
+Φ2

)
+ 𝐴3 sin

(
3𝜔 ln

𝑓

𝑓∗
+Φ3

)
+ · · ·

]
. (23)

As seen from the equation, each time one adds a higher-order term, the number of free
parameters increases by two (oscillation amplitude 𝐴𝑙 and phase Φ𝑙).
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Figure 3. Dependence of the expected errors 𝜎 for multiple harmonics, where we include up
to 𝑙max = 2 (left) and 𝑙max = 3 (right), plotted by varying the oscillation amplitude 𝐴2 and 𝐴3,
respectively. The other parameters are fixed at Ω0 = 10−11, 𝑛t = 0, 𝜔 = 10, 𝐴1 = 0.1, Φ1 = 0
for the 𝑙max = 2 case, while for the 𝑙max = 3 case the additional parameters are 𝐴2 = 0.1, Φ2 = 0
and Φ3 = 0. The black, orange and purple curves correspond to the oscillation parameters
(oscillation amplitude 𝐴𝑙 and phase Φ𝑙) for 𝑙 = 1, 𝑙 = 2, and 𝑙 = 3, respectively.

In figure 3, we display the expected errors for the cases where we include up to 𝑙max = 2
(left) and 𝑙max = 3 (right). Each panel is plotted by varying the oscillation amplitude of the
higher-order mode, 𝐴2 and 𝐴3, respectively. Surprisingly, we find that adding higher-order
terms does not affect the estimation of lower-order terms. For instance, when comparing the
left and right panels, we observe that the error magnitude of the 𝑙 = 1 parameters (𝜎ln 𝐴1 and
𝜎Φ1) remains the same, even after including the 𝑙 = 3 mode (notably, the orange solid and black
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solid curves completely overlap). Moreover, we can see that the errors are largely insensitive
to the magnitude of the additional harmonics. Interestingly, the errors on 𝜔 actually improve
when more harmonics are added and they decrease further when higher-order oscillations
have larger amplitudes (i.e., when 𝐴2 > 𝐴1 and 𝐴3 > 𝐴2). Although it is not shown in the
figure in order to avoid including too many lines, we have also confirmed that the addition of
higher-order modes does not affect the estimations of Ω0 and 𝑛t.

This behavior may seem contrary to one’s expectations, as errors typically increase when
more free parameters are added. The reason behind this is that the oscillation frequency of each
term shares the same parameter 𝜔 and each term contributes independent information with
oscillations of 𝜔, 2𝜔, 3𝜔 and so on. As each harmonic is independent, the error on each mode
remains largely unaffected even after the marginalization process. Moreover, by including
higher-order terms, we obtain more information about 𝜔, leading to a reduction in the error.
Additionally, the error decreases for larger oscillation amplitudes of higher harmonics because
having more oscillations within the sensitivity band helps to improve accuracy.

We stop the investigation at 𝑙max = 3 but this tendency remains consistent when adding
more harmonics. This implies that including additional harmonics is advantageous for
obtaining more information. However, one should also consider that adding more parameters
increases the computation time required for the parameter search. Therefore, the number of
higher-order terms to be included in the analysis should be carefully chosen depending on the
model one intends to explore and its theoretical prediction for higher-order modes.

6. Conclusions

In this paper, we have shown that the spectral shape (1)–(2), given by a multi-harmonic
linear superposition of log-periodic functions, is the most general spectral shape of a SGWB
displaying log oscillations in a given range of GW frequencies 𝑓 , independently of its physical
origin. This can be a valuable tool to control analytically log-oscillating models for which
the SGWB has been computed only numerically or in open form. We have reviewed log-
oscillating primordial spectra and stochastic backgrounds originated either by second-order
scalar perturbations or by tensor modes and also discussed new ways to obtain a log-periodic
SGWB, in particular, in any model of (or motivated by) quantum gravity endowed with a
discrete scale symmetry. In these cases, DSI originates from modified dispersion relations
or Fock vacua or, at a more fundamental level, as the manifestation of self-similar spacetime
geometries.

We also investigated the detectability of log-oscillation features in future GW
observatories by calculating the Fisher matrix in the case of the Einstein Telescope. The
main result we obtained from the analysis is that we can determine the oscillation parameters
with an 𝑂 (10%) precision if we have a detection with SNR ≳ 100 when the oscillation
amplitudes are 𝐴𝑙 ∼ 0.1 and the frequency is 𝜔 ∼ 10. The errors generically decrease as ∝
SNR for all parameters. Also, the errors on oscillation parameters scale as 𝜎ln𝜔 ∝ 1/(𝐴𝑙𝜔),
𝜎ln 𝐴𝑙

∝ 1/𝐴𝑙 and 𝜎Φ𝑙
∝ 1/𝐴𝑙 . This result generically applies also to other missions such

as CE, LISA and DECIGO; the prospect for different types of observation is summarized in
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table 1. Another relevant finding is that the error is insensitive to the inclusion of higher-order
harmonics, since each term can be constrained independently as the oscillation frequencies
are ordered hierarchically as integer multiples of 𝜔.

An interesting theoretical aspect to explore in the future is the possibility that DSI is
actually a gauge symmetry, thus respecting, in its exact form, the conjecture that quantum
gravity does not possess global symmetries [92–94]. Even if, to date, there is no compelling
rigorous argument supporting such conjecture in theories of quantum gravity not embedded
in string theory or the AdS/CFT correspondence, one could temporarily assume its validity
and see how one can gauge DSI and what the physical consequences of such operation are.

Logarithmic oscillations are just one more feature of models of the early universe within
and beyond Einstein gravity that can be systematically explored with gravitational waves.
In the latter case, GW observation is a promising window into the intimate nature of the
gravitational interaction.
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Appendix A. Universality of the log-oscillating spectral shape

In this appendix, we prove that, if a SGWB displays logarithmic oscillations in some range of
frequencies 𝑓 , then it must follow the spectral shape (1)–(2) in that range. To see this, we only
use symmetry and several trigonometric identities. We make only one assumption to make
the proof work.

Consider the generic spectral shape

Ωgw( 𝑓 ) = Ω̄gw( 𝑓 ) Ψ( 𝑓 ) , (A.1)

where Ω̄gw( 𝑓 ) depends on the model and Ψ is an arbitrary real-valued function of the GW
frequency. Set 𝑓∗ = 1 to simplify the following expressions. By definition, the presence of log
oscillations of a certain frequency 𝜔 (not to be confused with the GW frequency 𝑓 ) implies a
DSI, governed by the transformation law (3). This DSI must appear in the modulation factor Ψ,
which then must depend on 𝑓 via the simplest DSInvariant functions Λ𝑖 ( 𝑓 ) of log-periodicity
2𝜋:

Ψ( 𝑓 ) = Ψ[{Λ𝑖 ( 𝑓 )}] , Λ𝑖 (_𝜔 𝑓 ) = Λ𝑖 ( 𝑓 ) , _𝜔 = e
2𝜋
𝜔 . (A.2)
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Such functions Λ𝑖 are the elementary trigonometric functions of the logarithm:

Ψ( 𝑓 ) = Ψ[cos(𝜔 ln 𝑓 ), sin(𝜔 ln 𝑓 )] , (A.3)

so that Ψ is indeed DSInvariant:

Ψ(_𝜔 𝑓 ) = Ψ{cos[𝜔 ln(_𝜔 𝑓 )], sin[𝜔 ln(_𝜔 𝑓 )]}
= Ψ[cos(𝜔 ln 𝑓 + 2𝜋), sin(𝜔 ln 𝑓 + 2𝜋)]
= Ψ[cos(𝜔 ln 𝑓 ), sin(𝜔 ln 𝑓 )]
= Ψ( 𝑓 ) . (A.4)

Note that a generalization to the presence of constant phases inside the trigonometric functions
leads to the same formal expression (A.3), since a phase only produces a linear combination
of sine and cosine, e.g., cos(𝜔 ln 𝑓 +Φ) = cosΦ cos(𝜔 ln 𝑓 ) − sinΦ sin(𝜔 ln 𝑓 ).

Assuming that Ψ is analytic in its two arguments,2 one can Taylor expand it as

Ψ( 𝑓 ) =
+∞∑︁
𝑝=0

+∞∑︁
𝑞=0

𝑎𝑝,𝑞 cos𝑝 (𝜔 ln 𝑓 ) sin𝑞 (𝜔 ln 𝑓 ) , (A.5)

where 𝑎𝑝,𝑞 are some coefficients. An integer power of the sine or the cosine is given by a linear
superposition of sines and cosines with their argument multiplied by an integer. Depending
on whether 𝑝 and 𝑞 are odd or even [120, formulæ 1.320],

cos𝑝 \ =

{
1

22𝑛−2

∑𝑛−1
𝑟=0

(2𝑛−1
𝑟

)
cos[(2𝑛 − 2𝑟 − 1)\] , 𝑝 = 2𝑛 − 1

1
22𝑛

(2𝑛
𝑛

)
+ 1

22𝑛−1

∑𝑛−1
𝑟=0

(2𝑛
𝑟

)
cos[(2𝑛 − 2𝑟)\] , 𝑝 = 2𝑛

, (A.6)

sin𝑞 \ =

{
1

22𝑛−2

∑𝑛−1
𝑠=0 (−1)𝑛−𝑠−1 (2𝑛−1

𝑠

)
sin[(2𝑛 − 2𝑠 − 1)\] , 𝑞 = 2𝑛 − 1

1
22𝑛

(2𝑛
𝑛

)
+ 1

22𝑛−1

∑𝑛−1
𝑠=0 (−1)𝑛−𝑠

(2𝑛
𝑠

)
cos[(2𝑛 − 2𝑠)\] , 𝑞 = 2𝑛

, (A.7)

which allows us to recast (A.5) as

Ψ( 𝑓 ) =
+∞∑︁
𝑛=0

+∞∑︁
𝑚=0

𝑛−1∑︁
𝑟=0

𝑛−1∑︁
𝑠=0

[
𝑏𝑛,𝑚,𝑟,𝑠 cos(𝑡 (1)𝑛,𝑚,𝑟,𝑠𝜔 ln 𝑓 ) cos(𝑡 (2)𝑛,𝑚,𝑟,𝑠𝜔 ln 𝑓 )

+�̃�𝑛,𝑚,𝑟,𝑠 cos(𝑡 (3)𝑛,𝑚,𝑟,𝑠𝜔 ln 𝑓 ) sin(𝑡 (4)𝑛,𝑚,𝑟,𝑠𝜔 ln 𝑓 )
]
, (A.8)

where 𝑏𝑛,𝑚,𝑟,𝑠 and �̃�𝑛,𝑚,𝑟,𝑠 are coefficients that can be read from the above formulæ and
𝑡
(𝑖)
𝑛,𝑚,𝑟,𝑠 ∈ N are linear combinations of 𝑛, 𝑚, 𝑟, 𝑠 yielding positive integers. But now

2 cos(𝑡 (1)\) cos(𝑡 (2)\) = cos[(𝑡 (1) + 𝑡 (2))\] + cos[(𝑡 (1) − 𝑡 (2))\] , (A.9)
2 cos(𝑡 (3)\) sin(𝑡 (4)\) = sin[(𝑡 (4) + 𝑡 (3))\] + sin[(𝑡 (4) − 𝑡 (3))\] , (A.10)

so that, since 𝑡 (1) − 𝑡 (2) and 𝑡 (4) − 𝑡 (3) can also take negative integer values, we can rewrite
(A.8) as a Laurent series:

Ψ( 𝑓 ) =
+∞∑︁
𝑙=−∞

[
�̃�c
𝑙 cos(𝑙𝜔 ln 𝑓 ) + �̃�s

𝑙 sin(𝑙𝜔 ln 𝑓 )
]
. (A.11)

2 Therefore, this mini theorem does not encompass non-analytic cases such as Ψ( 𝑓 ) = 1/
√︁
| cos(𝜔 ln 𝑓 ) |.
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This reduction to just one sum is possible because all the coefficients 𝑡 (𝑖) ± 𝑡 ( 𝑗) appearing in
front of 𝜔 take integer values.

Finally, since cos and sin have definite parity, one can reduce the Laurent series (A.11)
to a sum on 𝑙 ∈ N,

Ψ( 𝑓 ) =
+∞∑︁
𝑙=0

[
( �̃�c

𝑙 + �̃�c
−𝑙) cos(𝑙𝜔 ln 𝑓 ) + ( �̃�s

𝑙 − �̃�s
−𝑙) sin(𝑙𝜔 ln 𝑓 )

]
=

+∞∑︁
𝑙=0

𝐹𝑙 ( 𝑓 ) , (A.12)

which is exactly the modulation factor in (1)–(2) with

𝐴c
𝑙 B �̃�c

𝑙 + �̃�c
−𝑙 , 𝐴s

𝑙 B �̃�s
𝑙 − �̃�s

−𝑙 , (A.13)

and normalization 𝐴c
0 = 1. The upper limit of the sum is then set to some finite 𝑙max either for

numerical purposes or because the underlying theoretical model predicts 𝐴c,s
𝑙

= 0 for 𝑙 > 𝑙max.

Appendix B. Analytic understanding for the parameter dependence of the Fisher errors

Here, we present an analytical estimate to understand the tendency of the parameter dependence
of the Fisher errors. By defining

Ω2
𝑛 ( 𝑓 ) B

(
10𝜋2

3𝐻2
0

)2
1

2𝑇obs

∑︁
(𝐼,𝐽)

𝑓 6𝑆𝐼 ( 𝑓 )𝑆𝐽 ( 𝑓 )
|𝛾𝐼𝐽 ( 𝑓 ) |2

, (B.1)

we can rewrite the SNR (18) and the Fisher matrix (20) as

SNR2 =

∫ +∞

0
d 𝑓

Ω2
gw( 𝑓 )
Ω2

𝑛 ( 𝑓 )
, (B.2)

F𝑖 𝑗 =
∫ +∞

0
d 𝑓

𝜕𝑝𝑖Ωgw( 𝑓 )𝜕𝑝 𝑗
Ωgw( 𝑓 )

Ω2
𝑛 ( 𝑓 )

. (B.3)

Then, for the 𝑙max = 1 case, we obtain

FlnΩ0 lnΩ0 =

∫
d 𝑓

Ω2
gw( 𝑓 )
Ω2

𝑛 ( 𝑓 )
= SNR2 , (B.4)

F𝑛t𝑛t =

∫
d 𝑓

Ω2
gw( 𝑓 )
Ω2

𝑛 ( 𝑓 )
ln2

(
𝑓

𝑓∗

)
, (B.5)

F𝜔𝜔 ≃
∫

d 𝑓
Ω2

gw( 𝑓 )
Ω2

𝑛 ( 𝑓 )
𝐴2

1 ln2
(
𝑓

𝑓∗

)
cos2

(
𝜔 ln

𝑓

𝑓∗
+Φ1

)
, (B.6)

F𝐴1𝐴1 ≃
∫

d 𝑓
Ω2

gw( 𝑓 )
Ω2

𝑛 ( 𝑓 )
sin2

(
𝜔 ln

𝑓

𝑓∗
+Φ1

)
, (B.7)

F𝜙1𝜙1 ≃
∫

d 𝑓
Ω2

gw( 𝑓 )
Ω2

𝑛 ( 𝑓 )
𝐴2

1 cos2
(
𝜔 ln

𝑓

𝑓∗
+Φ1

)
, (B.8)

where we have used the approximation 𝐴1 ≪ 1.
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The non-marginalized error is given by \𝑖 ∝ 1/
√
F𝑖𝑖 and it is useful to roughly estimate

the parameter dependencies. First, it is straightforward to obtain

\lnΩ0 =
1

SNR
. (B.9)

The rest of the parameters require numerical computations for a given detector sensitivity
and spectral shape. In fact, the integration for \𝑛t includes only ln( 𝑓 / 𝑓∗), so the detailed
shape of Ω2

gw( 𝑓 )/Ω2
𝑛 ( 𝑓 ) strongly influences the result. On the other hand, the tendency

of the oscillation parameters can be understood relatively easily by assuming frequency-
independence of Ω2

gw( 𝑓 )/Ω2
𝑛 ( 𝑓 ) = const. Considering that the integration of the oscillation

part does not induce additional parameter dependence, we obtain

\ln𝜔 =
\𝜔

𝜔
∝ 1

𝐴1𝜔
, (B.10)

\ln 𝐴1 =
\𝐴1

𝐴1
∝ 1

𝐴1
, (B.11)

\𝜙 ∝ 1
𝐴1

. (B.12)

These results agree with the trends in the bottom panels of figure 2.
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