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We use Molecular Dynamics simulations to study the formation and stability of single and mul-
ticomponent lattices in the outer crust of Neutron Stars. Including an improved treatment for
Gaussian charge distributions of ions we obtain the expressions for the potential and forces arising
from electron screened Coulomb interactions using the efficient Ewald sum procedure. Our findings
show that for baryon densities in the outer crust, a point-like ion treatment can not fully describe the
crystallization behaviour. In our work, the usual Coulomb parameter, ΓC , along with the screening
parameter from an electron polarizable background, κ, are complemented with an additional pa-
rameter, η, providing information on the finite size of ions. In our approach we find that including
beyond point-like approaches in screened ion plasmas under the Thomas-Fermi approximation has a
strong impact on calculated lattice energetic stability decreasing crystallization energies per baryon
up to ∼ 40% with respect to point-like interaction and, as a consequence, melting point resulting
displaced to lower temperatures.

I. INTRODUCTION

Neutron Stars (NSs) are compact stars that appear at
the end-point of the evolutionary path of progenitor stars
with masses larger than about ∼ 8M�. These collapsed
stars display a rich internal structure with matter den-
sities spanning many orders of magnitude from the core
to the outer crust. Some of the complexity related to the
microscopic modelling of their interior relies on the fact
that matter must be described under different Lorentz
regimes, from the relativistic nature of fluid interacting
matter in the core to the nearly classical ion dynamics in
the outer crust. Quantum effects arising from relativistic
leptons, superconducting and superfluid components [1]
and correlated states [2] are also present.

In the crust, thermodynamical quantities are inti-
mately dependent on the composition and the micro-
scopic model of matter interaction. In this line, there
is recent interest in studying multicomponent systems
arising from fully or partially accreted crusts [9]. This
originates from NS binary systems hosting the process
where matter from the companion star is intermittently
transferred to the NS surface and processed producing
highly luminous bursts in X-rays. Observing the cool-
ing of soft quiescent X-ray transients allows to probe
our understanding of NS composition from remaining
ashes [3], arrangement [4–6] and the deep crustal heating
mechanism [31]. Let us remind here that the composi-
tion can impact not only the generic equation of state
(EOS) i.e. the relation pressure versus energy density at
a given temperature, p(ε, T ) but specifically crust proper-
ties such as the thermal conductivity and shear modulus
with important consequences on the cooling of the star,
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the evolution of the magnetic field or the seismic activity
as described in [7–11] just to cite some previous works.

It is now well established that in the outer NS crust
matter arranges itself into periodic structures. An effec-
tive description of these very outer layers based on low
density ionic matter screened by electrons seems thus ap-
propriate. As established, for crustal densities beyond
106 g/cm3 electrons are in the degenerate relativistic
regime. It is in this scenario that a first approach to
the complex picture emerges invoking the presence of
Coulomb crystals, in which atoms are fully ionized and
electrons form a neutralizing (polarizable) fluid surround-
ing the periodic ion array. It has been thoroughly studied
in the literature, see [15–17] and references therein.

One particular realization is the one component plasma
(OCP), an idealized neutral plasma with a single species
of ions of charge Z (in units of electron charge e), mass
mI and ion number density nI (or equivalently ρ mass
density) where the cold electron fluid is described by

the relativistic parameter xr ≡ pF,e
me

=
(3π2ZnI)

1/3

me
≈

0.01
(
ρ Z
mI

)1/3

� 1. pF,e,me are the electron Fermi mo-

mentum and mass, respectively (we use ~ = c = 1).
A series of works have calculated the effect of electron

exchange correlations or polarizability, mostly within the
linear response formalism, see for example [15, 22, 23].
These calculations mainly focus, in the static regime, on
the electron longitudinal dielectric function ε(k) depen-
dent on momentum k in Fourier space. In the present
work we will assume that the full Debye screening at fi-
nite ion temperature i.e. T ≡ TI , is characterized by
k−1
D = λD ≈ k−1

TF , approximately that due to cold de-
generate electrons. For a system of ions in the polariz-
able electron background it can be written [23], to first

order corrections, under the form ε(k) = 1 +
k2TF
k2 ε2(k)

with kTF =
(
4πe2∂ne/∂µe

)1/2
the Thomas-Fermi (TF)

wave number and ne, µe = me

√
1 + x2

r being the electron
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number density and chemical potential, respectively.
Studies in Earth laboratories provide information on

the mass, charge and stability of nuclei [12]. Some of
the known neutron rich isotopes are expected to appear
in this NS environment. Typical values of ion density
in the outer crust are below the neutron drip density
ρND ∼ 4×1011 g/cm3 such that the screening parameter

kTF l . 1, where l = n
−1/3
I /ξ is the mean interparticle

distance and ξ = (4π/3)1/3. Under these conditions the
linear response approximation can account for electron
polarization to describe the system. At slightly higher
densities the neutron gas may distort lattice stability [24].

Different approximations for the responsive electron
sea are encoded in the form of ε2(k) as we will discuss in
what follows. Using [23], ε2(k) = 0 corresponds to the
case of a rigid background, being finite in the polarizable
case. Typically, the relativistic approach of Jancovici [25]
for degenerate electrons recovers, in the non-relativistic
limit xr � 1, the familiar Lindhard form, while for small
momentum k � 2kF,e it yields the widely used Thomas-
Fermi approximation ε2(k) = 1. We must note that al-
though the Thomas-Fermi approach is widely used in ion
dynamics, even in the context of previous NS crust cal-
culations [6], the reliable polarizable electron background
is recovered from a more general, relativistic treatment
such as that from RPA by Jancovici [25]. The reason
for this is the fact that at larger values of the screening
parameter κ ≡ kTF l the linear response approach fails.
At larger xr the screening in the ultrarelativistic electron
gas is only determined by the ion charge number Z being
this behaviour not captured by the simplified TF model
[16].

Calculations using Monte Carlo and Molecular dynam-
ics (MD) simulations [6, 26, 27] with a prescribed Yukawa
potential are consistent with a TF polarizable electron
gas. However, more refined estimates of electrostatic en-
ergy in Coulomb systems [23] find structural differences
in the lattices when TF or Jancovici models are used,
finding bcc lattices as the ground state for systems with
kTF l < 1.0657. Although the TF model has been widely
used, calculations using Jancovici models in degenerate
electron backgrounds can yield significant electrostatic
energy corrections for small Z, see Fig.1 in that same
ref. [23].

In this work we are interested in exploring additional
energetic corrections derived within the TF approxima-
tion but including beyond point-like approaches both in
OCP and multicomponent plasmas (MCP). In this sce-
nario, species population at low temperatures has been
calculated in [28, 29] being most likely an ion distribution
peaking at given baryon mass A with some spread, see
[30].

This manuscript is organized as follows. In Sec. II we
discuss our formalism, including the Molecular Dynam-
ics setup used and the efficient procedure for energetics
and force calculation using the Ewald sum for screened
OCP and MCP systems with Gaussian finite size charge
spread. In Sec. III we present our results arising from

FIG. 1. Polarization coefficient |Cε| ≡ |ε−1 − 1| as a function
of y = k/2kF,e in the electron polarization energy [16] in the
Thomas-Fermi and Jancovici [25] approximations. See text
for details.

our computational simulations and discuss our findings
in light of other existing calculations. Finally in Sec. IV
we summarize and conclude.

II. SCREENED OCP AND MCP SYSTEM WITH
GAUSSIAN CHARGE DISTRIBUTION

We aim to describe in detail the screened OCP or MCP,
a charge-neutral system with ion density nI =

∑
iXinI,i,

composed of i ion types, each carrying electric charge Zi
and mass number Ai in the sample of NI ions. Number
fractions are defined as Xi = NI,i/NI . As mentioned, at
crustal densities beyond 106 g/cm3 electrons have been
stripped off the atoms forming a relativistic degenerate
Fermi sea, thus the potential created at distance r by the
ith ion at position ~ri is not the nude Coulomb but for the
screening conditions considered, where kTF l . 1, it will
be approximated in the linear response by the so-called
Debye potential.

In terms of the static dielectric function ε(k) the en-
ergetic correction due to the electron polarization re-
sponse [16] will depend on ε−1(k) − 1 so that for y ≡
k/2kF,e & 1/4 a clear departure arise among TF and
Jancovici models [17], see Fig.(1), involving important
consequences, such as a robustly less bound bcc lattice
in the ground state for the relativistic model. Note that
this limit of large y corresponds to typical small distances
1/r ∼ k ∼ y.

In the TF approximation for the dielectric function in
Fourier space, the space dependent potential displays a
Yukawa-like form

φi (~r) =
Zi

|~r − ~ri|
e−
|~r−~ri|
λe , (1)

where λe ≡ λTF = k−1
TF is the TF screening length. In



3

the relativistic limit it fulfills kTFl ≈ 0.185Z1/3 (1+x2
r )

1/4

x
1/2
r

for degenerate electrons. Electron number density is
parameterized in the charge neutral system as ne =∑
i ZinI,i =

k3F,e
3π2 .

At this point it is worth discussing how the thermody-
namical quantities of interest will be calculated from the
crystal/fluid configurations found in equilibrium as dic-
tated by Molecular Dynamics in an interacting system
of ions in presence of a polarizable electron background.
In this setup, widely used in many-body systems, see for
example [32, 33] for Yukawa or Lenard-Jones systems, we
solve the equations of motion for ions considering dynam-
ical oscillations will be much smaller, ω � ωp, than their

associated plasma frequency, ωp =
(
4πe2nIZ

2/mI

)1/2
,

so that the screening is instantaneous and the dielectric
function ε(k, ω) ' ε(k) only depends on momentum k.
This fact is responsible for modifying the effective forces
(and dynamics) in the screened ion system.

Thus in our treatment we will not follow the dynam-
ics of relativistic electrons in the charge neutralizing gas,
being the screening of the ionic Coulomb interaction the
result of the responsive electron gas. Ion positions and
momenta, even in crystallized states, are used to obtain
subsequent magnitudes resulting from the simulation af-
ter reaching long-term stable equilibrium starting from
the initially randomized ion phase space at the desig-
nated NVT ensemble.

As stated in [7] thermal de Broglie wavelengths of free

ions λdB,I =
(

2π
mIkBT

)1/2

allow sizing the importance of

quantum effects on their motion, i.e. when λI & l or at
T � Tp, where Tp ≡ ωp (we set kB = 1 from now on)
is the effective temperature of ion plasma frequency. As
the typical simulated temperatures are T & 108 K, in our
case only classical effects will be relevant.

A. Ewald sums in screened Gaussian ion systems

To efficiently sum force and energetic contributions in
our system we implement the Ewald technique [34] usu-
ally applied when dealing with the Coulomb potential or
finite range potentials in general [35, 36]. This allows
an accurate evaluation of electrostatic potentials (forces)
along with periodic boundary conditions (PBC).

Briefly, Ewald decomposition is used to split the prob-
lem into real-space and Fourier-space parts as it greatly
accelerates computation yielding an improved energy
evaluation [37]. Other alternative approaches use sums
over neighboring simulation replicas [5, 6].

We will focus our study of OCP and MCP systems
likely appearing in the outer NS crust, thus in order to
illustrate typical conditions we will focus on ion densities
in the range nI ∼ 10−6 − 10−4 fm−3, corresponding to
baryon densities nB ∼ 0.0001− 0.01 fm−3.

We now describe the species simulated in our work.
First, inspired by [38] and latter updated by [28] we con-

sider a OCP with a single species Z = 38, A = 124 and
two MCP mixtures, see [29], that we label as M1,M2.
For the latter we particularly use the composition from
[3, 6] and set five species with a common global lepton
fraction Ye|M1 ∼ Ye|M2 = 0.43 and impurity parameter
Qimp|M1 =

∑
iXi(Zi − 〈Z〉) = 21.48 and Qimp|M2 =

10.69.

More specifically for mixture M1 we take
{Z,A,Xi}|M1

={(30,69,0.407), (28,64,0.352),
(42,100,0.111), (32,76,0.074), (40,96,0.056)}. We
will also consider an alternative mixture, M2,
differing from M1 in just two ion species, in or-
der to study the effect of the variation of the
most frequent ion species in the crystallization,
i.e. {Z,A,Xi}|M2 ={(32,69,0.407), (28,64,0.352),
(36,100,0.111), (32,76,0.074), (40,96,0.056)}. At this
point we are aware that especially for OCP the chosen
species may retain some underlying model dependence,
later we will comment how our results are robust in this
respect.

The crystallization is characterized by two dimension-
less parameters. The first one is the Coulomb parame-
ter ΓC = Z2/lT . The second one is the screening pa-
rameter κ = l

λe
≡ kTF l. We note here that although

generically κ = 0 corresponds to the unscreened Coulomb
case, in the relativistic theory it cannot be smaller than
(kTFl)min = 0.185Z1/3.

In order to study this system we will be using computa-
tional techniques, MD, to solve the equations of motion of
NI = nIV ions in a cubic box with volume V = L3. Each
ion is modeled as a finite-size Gaussian charge density

distribution [39] in the form ρi,ai(r) = Zi
(
ai
π

) 3
2 e−air

2

where ai = 3
2〈R2〉 and

√
〈R2〉 =

(
0.8A1/3 + 2.3

)
reason-

ably describing the A > 60 nuclear size we consider and
their binding energies when compared to more refined
treatments of Xu et al. [40], see Fig.(2).

In what follows we will define another dimension-
less parameter, ηi = 1/

√
ail, to characterize the charge

spread of a given ith species in the OCP/MCP. This pic-
ture thus aims to size the effect of ions when compared
to previous attempts using point-like charges (η = 0)
[19, 35]. We must note that previous works, see [15],
partially incorporated ion-ion correlations in the periodic
point-like ion arrays using the structure factor of the par-
ticular lattice S(q) and fitting the q → 0 behaviour. They
used, in the elastic part of S(q) the point-proton form fac-
tor given by the Debye-Waller approximation where in

the classical limit T � Tp, e
−W (q,Γ,0) ≈ e−〈r

2〉q2/6. This
approximation mitigates the unphysical nuclear point-
like nature although does not fully incorporate the re-
finement due to the proton charge form factor nor the
Tassie-Barker correction, see [41] for a discussion. As
mentioned, this treatment somewhat corrects the point-
like behaviour being its usability limited to small mo-
mentum, q, for nuclear radii, R, fulfilling qR� 1.

In our calculation, our simulations incorporate the ion
Gaussian charge distribution description for each species
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FIG. 2. Charge density distribution from [40] together with Gaussian functions used in this work for four representative ions
used in OCP (first left) and mixtures M1,M2.

as the source of the screened fields (see Eq.(2)) creat-
ing the potentials and forces in the dynamical equations
being solved in real space-time.

Arising from this treatment, the new resulting ionic
potential is thus a superposition of those from individual
screened Gaussian ions ρi,ai(r) so that when solving the
Poisson equation we must replace Eq.(1) by

φZi,ai (~r) =
Zi

2|~r − ~ri|
e

1
4aiλ

2
e

[
e
− |~r−~ri|

λe erfc

(
1

2
√
aiλe

−

√
ai|~r − ~ri|)− e

|~r−~ri|
λe erfc

(
1

2
√
aiλe

+
√
ai|~r − ~ri|

)]
, (2)

with erfc the complementary error function.

In order to implement the screened interaction from
Eq.(2) using the Ewald summation technique [34] we
must introduce spurious screening charges with oppo-
site sign, −Zi to screen the real ones, +Zi, in the form

ρ−Zi,αEwald
= −Zi

(
αEwald

π

) 3
2 e−αEwaldr

2

with αEwald a
characteristic width parameter. To maintain the elec-
trical charge neutrality compensating charges ρZi,αEwald

must be also considered.

The interaction energy is thus efficiently obtained from
fast converging contributions of short and long-range
terms, minus an extra term to exclude self-interactions
and properly setting a meaningful ground state value
as explained in [35]. Contributions can be written as
U = Ushort−range +Ulong−range−Uself and we detail them
in what follows.

This novel calculation for potentials and forces in the
case of Gaussian ions in screened OCP and MCP is
described below. First, a short-range part describes
the interaction between the real charges and the poten-
tial created by the sum of real plus screening charges,
φshort−range,i (~r) = φZi,ai (~r) + φ−Zi,αEwald

(~r).

It is given by the integral expression

Ushort−range =
1

2

NI∑
i=1

NI∑
j 6=i=1

2Zj

(aj
π

) 1
2 e−ajr

2
ij

rij
×

[∫ ∞
0

r′φshort−range,i (r′) e−ar
′2

sinh (2ajrijr
′) dr′

]
− 2π

V

NI∑
i=1

NI∑
j=1

Zj

∫ ∞
0

r′2φshort−range,i (r′) dr′, (3)

where rij = |~ri− ~rj | is the distance between the ij parti-
cles. This contribution has a dependence in the interpar-
ticle distance that tails off quickly, so that it converges
very rapidly in real space.

A long-range part of the interaction is created by
the compensating charges and the background aver-

age charge, ρavg =
∑
i Zi
V under the prescription∑

i ρZi,αEwald
− ρavg . Explicitly, this is done by trans-

forming Poisson’s equation from the coordinate space to
the Fourier k-space and including a summation over re-
ciprocal lattice vectors so that the sum converges to a
finite value under the form

φlong−range(~r) =

N∑
j

∑
~k 6=0

4πZj

V
(
k2 + 1

λ2
e

)e −k2
αEwald ei

~k(~r−−→rj)

(4)

where ~k = 2π
L (nx, ny, nz) and nx, ny, nz ∈ Z.

The associated energy term, Ulong−range, is thus

Ulong−range =
1

2

NI∑
i,j=1

∑
~k 6=0

4πZiZj

V
(
k2 + 1

λ2
e

)×
[
e
−k2
4

(
1
ai

+ 1
αEwald

)
ei
~k(~ri−~rj)

]
.

(5)

Finally, it remains to substract the interaction between
the real charge and its own compensating charge as it is
included spuriously in the long-range part. It is given by
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Uself = 2π

NI∑
i=1

(ai
π

) 3
2

Zi

∫ ∞
0

r′2φZi,αEwald
(r′) e−air

′2
dr′,

(6)
In our approach using MD simulations the pairwise

force computation ~Fij arises from the gradient of Eqs.
(3),(5) and takes the form

~Fij,short-range = 2
(aj
π

) 1
2 Zje

−ajr2ij

r2
ij

(
~rij
rij

)
×{∫ ∞

0

r′φshort−range,i (r′) e−ajr
′2

[(
1 + 2ajr

2
ij

)
sinh

(
2ajr

2
ij

)
− 2ajrijr

′ cosh
(
2ajr

2
ij

)]
dr′
}

(7)

~Fi,long−range =
1

2

∑
j

∑
~k 6=0

8πZiZj

V
(
k2 + 1

λ2

)e −k2
4αEwald×

[
e
− k2

4ai ei
~k·(~ri−~rj) − e−

k2

4aj e−i
~k·(~ri−~rj)

] ~k
2i

(8)

III. MD SIMULATIONS OF SCREENED OCP
AND MCP WITH GAUSSIAN CHARGE SPREAD

We performed our simulations using a multi-core
computer infrastructure along with our original code
USALMDGI using Fortran+OpenMP. We numerically
solved the ionic motion while interacting via the Debye
potential in Eq.(2) incorporating Ewald sums and PBC
in the NIVT ensemble. Up to NI = 1024 ions were used
in this work and we verified that our energy (T) con-
trol was good to δU/U ∼ 10−5. When computing av-
erages over directions in k-space a maximum number of
nk,max > 7 was imposed as dictated by efficiency [37] in
the Ewald procedure, resulting in 2nk,max + 1 replicas in
each Cartesian direction.

In our simulations we either considered a screened
OCP with a single ion density, nI or a mixture, M1,M2

with impurity parameter Qimp = 0, 21.48, 10.69, respec-

tively. The size of the simulation box was L = V 1/3. The
kinetic energy (or temperature T ) was rescaled during
the time evolution until equilibrium was achieved (typ-
ically ∼ 106 fm/c with variable timestep dt ∼ 10 − 60
fm/c) starting from a random distribution that we anneal
when needed to the requested thermodynamical condi-
tions. It is worth mentioning that alternative procedures
to maintain constant temperature, such as thermostats,
are available but since they involve additional parame-
ters associated to the heat bath we do not expect much
gain from their use, see previous works [42–44] using that
of Nosé-Hoover in nuclear systems.

In Fig.(3) (bottom panel) we show the energy per
baryon, U/A, as a function of the Coulomb parameter
Γ ≡ ΓC for a screened OCP with Z = 38, A = 124 and

FIG. 3. Potential energy per baryon as a function of the
Coulomb parameter Γ for ions with Z = 38, A = 124 at
nI = 2.06 × 10−6 fm−3. Bottom panel: non-screened OCP
as obtained in point-like Coulomb fluids [45] (solid red line)
and our results from MD simulations using point-like ion dis-
tributions (black points). Upper panel: screened OCP with
finite-size ion charges as obtained in MD simulations in our
work (solid blue lines). Vertical grey bands depict the region
where our simulations predict solid-fluid phase transition and
system melts.

nI = 2.06× 10−6 fm−3. The realistic charge distribution
along with our Gaussian approximation is shown in left
panel in Fig. (2). We depict with vertical grey bands
the region where our simulations predict solid-fluid phase
transition and system melts. The transition involves a
jump in (potential) energy for our fixed NVT ensamble.

Let us remind here that, once the NVT thermodynami-
cal conditions in our MD simulation are initially fixed the
equilibrated systems results in a determined solid or fluid
state. Melting in the point-like Coulomb case, κ = 0, is
recovered at Γm(κ = 0) ≡ Γm ∼ 175 and accommo-
dated in the interval we find Γm ∈ [171, 177] while that
from the screened OCP we find Γm ∈ [181, 200]. Previ-
ous works using Yukawa fluids [46], have provided a phe-

nomenological fit given by Γm,κ ≡ Γm (κ) = 172eξκ

1+ξκ+ 1
2 ξ

2κ2

that consistently predicts Γm,κ = 187 for our simulated
systems. From this expression, the unscreened value is
predicted at Γm,κ=0 = 172, instead of 175 but this has no
impact on our results as we let the ion dynamics in our
simulated system evolve towards the stable final config-
uration. Note that the fact that the melting parameter
for our simulated screened ion system in the relativistic
polarizable electron background is larger than the canon-
ical Couloumb value does intimately depend on the ion
species composition (Z,A) and ion-electron correlation,
previously shown to have no monotonous behaviour with
pressure (density), see Fig. 4 in [29]. In Fig. 3 in that
same work [29] at T = Tm and P . 5× 10−7 MeV fm−3,
〈Z〉 . 27, a decreasing Γm tendency was shown while it
was reversed afterwards up to 〈Z〉 ∼ 42, to jump over
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FIG. 4. Potential energy per baryon for OCP cases at
nI = (1, 2, 4) × 10−4fm−3, plotted against charge spread η.
η = 0 corresponds to point-like charges. Solid lines depict
the obtained lattice region while dashed ones correspond to
melted configurations as obtained in our MD simulations.
Large dots indicate the η value corresponding to the ion,
Z = 38, A = 124, see left panel in Fig.(2).

the canonical Coulomb value Γm = 175 and slightly de-
crease from that on. Correspondingly, in the case we
depict in Fig.(3), with Z = 38, A = 124, we are above
the P ∼ 10−4 MeV fm−3, 〈Z〉 ∼ 26 and thus the Γm that
we find is larger than the canonical unscreened value.

Our simulations nicely reproduce previous Coulomb
fluid calculations [27, 45] for the point-like unscreened
case using the expressions provided in Sect. II with
κ = 0, as shown in Fig.(3) bottom panel. In the top panel
we consider the screened case, obtaining a reduction up
to ∼ 40% in potential energies resulting in a distorted
melting diagram with a clear shift towards lower temper-
atures, i.e. higher Γ, melting parameter being predicted
[46] around Γm(κ) = 187. The effect of Gaussian charge
distribution for this low ion density case does not cause
any qualitative change, as η ∼ 0.11.

In Fig.(4) we show the energy per baryon, U/A, as a
function of the charge spread parameter η = 1/

√
al for a

screened OCP (Z = 38, A = 124) and nI = (1, 2, 4) ×
10−4fm−3. Point-like ions correspond to η = 0. We
set Γ = 190 and for this case melting is approximately
predicted [46] at Γm,κ = 187.

In order to size the corrections introduced when vary-
ing charge spread we use the following procedure. We fix
the ion species to Z = 38, A = 124, since by doing this we
can explore the change in ion finite size (or equivalently,
A) without variation of Γ. We see that as charge distri-
butions are realistically described having a finite spread
the lattice energies are monotonically less stable.

In addition, to evaluate the robustness of our find-
ing we vary η indicating on each line with a large dot
that corresponding to the size assigned according to our

prescription for Gaussian spread (as is A and density
dependent) and determine the change with respect to
point-like description finding ∆U/U ∼ 16, 24, 36% for
nI = (1, 2, 4) × 10−4fm−3, respectively. We note that
uncertainty on this prescription does not change the be-
haviour.

Solid (dashed) line shows where the lattice, although
less stable, manages to exist (melts) when increasing the
spread for fixed Γ = 190 > 187 i.e. above the quoted
melting parameter value. Thus for increasing values of
the density (yet in the outer crust) an ionic point-like
description is not appropriate when describing the ener-
getics nor the melting behaviour as it may overpredict
the existence of periodic lattices. However for densities
corresponding to values of η . 0.5 this effect is no longer
critical on the melting parameter but it does affect the
energetic stability of the lattice.

In order to analyze the effect of having species con-
tamination, possibly due to an accretion episode and fur-
ther processing, we consider ion mixtures M1,M2. Note
that for multicomponent systems the fraction averaged
ΓMCP =

∑
iXiΓi [6] where Γi are those of Coulomb

theory for each ion component with fraction Xi and
〈Z〉 =

∑
iXiZi is the average charge density of the sys-

tem.
Thus to understand the effect of both the balance of

the individual ion population weights and charge spread
we have performed simulations fixing nI . For mixture
M1 at nI = 1 × 10−4 fm−3 we find there is a change in
energy ∆U/U ∼ 11% for ΓMCP ∈ [190, 214] when con-
sidering point-like compared to finite size ions. However
despite a modest correction, there is an important differ-
ence, while in the scanned range ΓMCP > Γm,κ we would
expect a crystallized sample, we find this only happens
for ΓMCP > 214 where there is a qualitative change for
the most frequent ion (Z = 30, A = 69) in M1 whose
Γi > Γm,κ. Therefore we find that crystallization is af-
fected by the individual Γi of population fractions (in the
point-like or finite charge spread) it being a robust effect
when increasing plasma densities.

If we now compare M1 and a slightly different mixture
M2 (where only two ion species are different) we find
that for this same density nI = 1 × 10−4 fm−3 at same
Xi, ΓMCP = 195 and Γm,κ = 187 a dramatic change
arises leading to lattice formation in M2, with a decrease
of ∼ 14% in energy per ion while M1 stays as a fluid,
irrespective of whether we use a point-like or Gaussian
charge distribution.

IV. CONCLUSIONS

We have simulated finite-size ionic systems immerse
in a relativistic degenerate electron background using
Molecular Dynamics in a fixed NVT ensemble. With
this technique we effectively solve the dynamical equa-
tions for ions having a Gaussian charge spread that de-
pends on their mass number, A. We have obtained ex-



7

pressions for pair-wise forces appropriate to use with ef-
ficient Ewald sums. This procedure is valid for single or
multiple species plasmas, i.e. OCP or MCP. In addition,
potential energy U is also obtained in this setting.

We find that for densities of interest in the outer crust
of NSs, where electrons are in the degenerate relativistic
regime, the static Thomas-Fermi approximation yields
results in agreement with relativistic Jancovici expres-
sions at low momentum, k � 2kF,e and this is consis-
tent for low density crystals. Ion species population and
ion-electron correlations obtained analytically in previ-
ous works in the literature from free energy minimization
find melting parameters whose trends, for the cases we
analyze, are in agreement with those found. A careful
evaluation of energetic stability of crystallized systems
should include not only screened interaction by means
of the screening parameter, κ, but also that sizing the
charge spread, η. We improve previous works using ap-
proximations where nuclei are treated as point-like ob-
jects by considering instead their finite size being able
to follow the dynamics in real time. We find that incor-
porating these refinements leads to a steady decrease of
energetic stability of lattice and it may lead to melting
at lower temperatures than when calculated with point-
like approaches. In addition, for MCP systems special

caution must be taken when using effective values of the
Coulomb parameter as the fractions (or equivalently the
individual Γi) play a critical role to crystallize the system.
We expect that this could somewhat influence the bind-
ing energy leading to less stable configurations with pos-
sible impact on the mechanical properties derived from
the stress tensor.
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[43] M. A. Pérez-Garćıa, Journal of Mathematical Chemistry
40, 63 (2006).

[44] P. Mehta, R. Nandi, R. d. O. Gomes, V. Dexheimer,
and J. Steinheimer, Universe 8, 10.3390/universe8070380
(2022).

[45] E. L. Pollock and J. P. Hansen, Phys. Rev. A 8, 3110
(1973).

[46] S. A. Khrapak and H. M. Thomas, Phys. Rev. E 91,
023108 (2015).

https://arxiv.org/abs/1912.02849
https://doi.org/10.1103/RevModPhys.89.041002
https://doi.org/10.1103/RevModPhys.89.041002
https://arxiv.org/abs/1606.03646
https://arxiv.org/abs/1606.03646
https://doi.org/10.1086/311578
https://doi.org/10.1086/311578
https://doi.org/10.1063/1.467955
https://doi.org/10.1063/1.467955
https://doi.org/10.1021/j100303a014
https://doi.org/10.1021/j100303a014
https://doi.org/https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1103/PhysRevC.68.035806
https://arxiv.org/abs/nucl-th/0308007
https://arxiv.org/abs/nucl-th/0308007
https://doi.org/10.1063/1.1605941
https://doi.org/10.1063/1.1605941
https://doi.org/10.1063/1.4850655
https://doi.org/10.1103/PhysRevC.83.065810
https://doi.org/10.1103/PhysRevC.83.065810
https://doi.org/10.1006/adnd.1997.0751
https://doi.org/10.1051/0004-6361/201220537
https://arxiv.org/abs/1212.0628
https://arxiv.org/abs/1212.0628
https://doi.org/10.1515/zna-1992-1206
https://doi.org/10.1103/PhysRevC.69.055805
https://doi.org/10.1007/s10910-006-9120-y
https://doi.org/10.1007/s10910-006-9120-y
https://doi.org/10.3390/universe8070380
https://doi.org/10.1103/PhysRevA.8.3110
https://doi.org/10.1103/PhysRevA.8.3110
https://doi.org/10.1103/PhysRevE.91.023108
https://doi.org/10.1103/PhysRevE.91.023108

	 Crystallization in single and multicomponent Neutron Star crusts.
	Abstract
	I Introduction
	II Screened OCP and MCP system with Gaussian charge distribution
	A Ewald sums in screened Gaussian ion systems

	III MD simulations of screened OCP and MCP with Gaussian charge spread
	IV Conclusions
	 Acknowledgments
	 References


