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obvious ET-CE synergies
on observational Science :

* building together a compelling Science Case

The GWIC 3G Science Case Team Consortium, 3G Science Case
(coordinated by Sathya, Vuk, contributors from both
US and EU communities,

several parts used for the Astro2020 decadal survey)

Science Case for the Einstein Telescope
(coordinated by MM, 1912.02622, JCAP 2020)



A summary of the Science of 3G
Astrophysics
* Black hole properties

— origin (stellar vs. primordial)
— evolution, demography
* Neutron star properties
— interior structure (QCD at ultra-high densities, exotic states of matter)
— demography
* Multi-messenger astronomy
— joint GW/EM observations (GRB, kilonova,...)
— multiband GW detection (LISA)
— neutrinos
* Detection of new astrophysical sources
— core collapse supernovae

— 1solated neutron stars

— stochastic background of astrophysical origin.



Fundamental physics and cosmology

* The nature of compact objects
— near-horizon physics
— tests of no-hair theorem

— exotic compact objects

* Tests of General Relativity
— post-Newtonian expansion

— strong field regime

* Dark matter
— primordial BHs
— axion clouds, dark matter accreting on compact objects



* Dark energy and modifications of gravity on cosmological
scales

— DE equation of state
— modified GW propagation

* Stochastic backgrounds of cosmological origin and connections
with high-energy physics
— 1inflation
— phase transitions

— cosmic strings

... and we should not forget that ET/CE will be
"discovery machines’

Expect the unexpected!
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The combination of

 distances and masses explored
* number of detections

* detections with very high SNR

will provide a wealth of data that have the potential of
triggering revolutions in astrophysics, cosmology and
fundamental physics



Astrophysics with BBH

ET/CE will uncover the full population of coalescing stellar BBH
since the end of the cosmological dark ages

* contribute to uncover the star-formation history of the Universe

* disentangle stellar origin from primordial BH
— compare redshift dependence with SFR determined electromagnetically
— PBH should trace the distribution of DM rather than of baryons
the large number of detections will allow cross-correlations
— any stellar-mass BBH at z > 10 will be primordial

» discover seed BHs with M=0O(10°%) M,



QCD with neutron stars
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Continuous GWs from i1solated NS
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Multi-messenger astronomy

* main aims: formation, evolution and multi-messenger
emission mechanism of neutron stars (kilonovae, short GRBs)

star formation history, chemical evolution of the Universe

* Lowz:
higher SNR — constrains on EOS (from info progenitors and remnant)
Golden sample of detection with localization < 1 deg?
— possibility to detect the kilonova with the second generation
instruments of ELT such as MOSAIC

* High-z: benefits in operating with high-energy satellites able to localize
GRBs (large sample of detection for cosmology, GRB emission mechanism,
jet physics)

e.g. THESEUS is expected to detect 20-40 short GRB/yr within 1°— 5’



fraction of events

with ET alone: at low z, large benefit from operating with 2G
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Fundamental physics/ cosmology

scales probed by gravity experiments
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BH quasinormal modes and Exotic Compact Objects

several proposal for exotic compact objects:
(boson stars, stars made of dark matter particles...)

are distinguishable because of the QNM

more speculative: quantum gravity effect near the BH horizon?

(Hawking information paradox, firewalls, etc.)

echos: R
Techo = 75 log(RS/EPl)



Cosmology and DE with ET
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* Conceptual perplexities raised by a cosmological constant
technically unnatural value, coincidence problem

good observational and theoretical reasons for testing ACDM
and, especially, present and future data good enough to test it

Need to modify GR on cosmological scales?



Where to look for a non-trivial DE sector?

background evolution
deviations in wpg from -1 bounded at (3-7)%

scalar perturbations tensor perturbations

(gravitational waves)
from growth of structures

and lensing, bounds at the a new window on the
(7-10)% level Universe, that we have just
opened
WDE5

modified GW propagation



Ideas for the future: developing 1n more
technical detail the science for 3G

— theoretical 1deas usually apply equally well to ET
and CE

— (loose) form of coordination for people working
on predictions/forecasts?
* eg sensitivity curves, network configurations,
* repository of useful works

* questions for the community at large (what 1s
important/urgent to address?)



bkup slides
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Several studies of forecasts for wpg at ET

Sathyaprakash, Schutz, Van Den Broeck 2009; Zhao, Van Den Broeck, Baskaran, Li 2011;
Taylor and Gair 2012; Camera and Nishizawa 2013; Cai and Yang 2016;
Belgacem, Dirian, Foffa, MM 2017,2018

typical assumptions:
— O(10%) BNS with em counterpart over 3 yr

— BNS distributed uniformly in comoving volume for 0<z<2, or using a fit to
the rate evolution

— generate a catalog of detections assuming a sensitivity curve for ET and
SNR>8

— assume a fiducial cosmological model (ACDM) for d; (z)
— scatter the data according to the error Ad;(z)
— run a MCMC (or Fisher matrix) and use priors from CMB, BAO, SNe to
reduce degeneracies between cosmological parameters
Result: not a significant improvement on wpg compared with what
we already know from CMB+BAO-+SNe



A potentially more interesting observable?
M()dlﬁed GW propagati()n Belgacem, Dirian, Foffa, MM

1712.08108 ,1805.08731
Belgacem, Dirian, Finke, Foffa, MM

1907.02047, 2001.07619
Belgacem et al, LISA CosWG, 1907.0148

mGR: p% 4 9HE, + k*ha =0

ha(n, k) = %ﬂ(mk)

X4+ (K2 —a"/a) xa =0

inside the horizon a”/a < k?,s0 X4 +k*Xa =0

1. GWs propagate at the speed of light
2. hy o 1/a For coalescing binaries this gives hg o< 1/dp(2)



In several modified gravity models:
Wi 4+ 2H[1 — 6(n)|hy + k2ha = 0

This 1s completely generic in modified gravity:
(Belgacem et al., LISA CosmoWG, JCAP 2019)

* non-local modifications of gravity
« DGP
 scalar-tensor theories (Brans-Dicke, Horndeski, DHOST,..)
* bigravity
haox1/a



the "GW luminosity distance" 1s different from the standard
(electromagnetic) luminosity distance !

in terms of 0(z) :

dp" (z) = dp™(2) eXp{—/OZ 4= 5(2’)}

1+ 2/

prediction of nonlocal gravity

(long term project
in the MM group)
80% effect at z>1 !!!




a general parametrization of modified GW propagation

Belgacem, Dirian, Foffa, MM
PRD 2018, 1805.08731

dp” (z) _ =, 1 —=p
dr™(z2) (1+2)"

e.g. for the RT model in the best case =¢ ~ 1.8, n=>~1.9

However, the parametrization is very natural, and indeed
we find (LISA CosmoWG) that it fits the result of (almost)
all modified gravity models

parametrizing extension of the DE sector:
background: (wy,w,); scalar pert: (X, W) ; tensor pert: (5, n)

for standard sirens, the most important parameters are w, =,



Forecasts for DE with ET from full MCMC

Belgacem, Dirian, Foffa, MM
2018
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FOI‘CC&StS fOI‘ LISA Belgacem et al LISA CosmoWG 2019

BB CMB+BAO+SNe
—0.80 HEE CMB+BAO+SNe+LISA opt_hnd

using supermassive BH =~ -

binaries, o
=

-1.04

A=, =(1-4)%, Awy, =4.5% =

—1.20 A

080 088 096 1.04 112  1.20

(depending on formation =0
scenarios for SMBH binaries)



