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Abstract. One of the main pillars of the ACDM model is the Cosmological Principle, which
states that our Universe is statistically isotropic and homogeneous on large scales. Here
we test this hypothesis using the Astrophysical Gravitational Wave Background (AGWB)
expected to be measured by the Einstein Telescope-Cosmic Explorer network; in particular we
perform a numerical computation of the AGWB dipole, evaluating the intrinsic contribution
due to clustering and the kinematic effect induced by the observer motion. We apply a
component separation technique in the GW context to disentangle the kinematic dipole,
the intrinsic dipole and the shot noise (SN), based on the observation of the AGWB at
different frequencies. We show how this technique can also be implemented in matched-
filtering to minimize the covariance which accounts for both instrumental noise and SN. Since
GW detectors are essentially full-sky, we expect that this powerful tool can help in testing
the isotropy of our Universe in the next future.
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1 Introduction

The largest fluctuation in the CMB angular power spectrum is the dipole and it is due to
the motion of the observer w.r.t. the CMB rest frame [1-5]. At the same time, the observed
CMB “anomalies” at low multipoles (e.g., dipolar asymmetry) could suggest a violation of
the statistical isotropy [6, 7] and they could provide possible hints of new physics; therefore
is quite natural to investigate the dipole of different observables as a consistency check of
the ACDM. In the past years, statistical isotropy has been tested by looking at the dipole
of Large-Scale Structure (LSS) surveys at various frequencies, for example for 2MASS and
2MRS in the IR [9], for NVSS [10-12| and for TGSS [13] looking at radio galaxies, and for
WISE [14] for quasars. Most of these works have found dipoles with direction similar to the
CMB one, but with an unexpected large amplitude, which appears to be in conflict with the
Cosmological Principle. In LSS surveys, there are several sources of error, such as the Shot
Noise (SN), due to the discreteness of the observed sources [10, 15|, the partial sky coverage of
the survey, which generates a bias in the amplitude, a degeneracy between the components of
the dipole along different directions, and mode coupling between different multipoles. Many
of these issues have been studied systematically in [9]. Another trouble in estimating the
kinematic dipole in LSS surveys is due to the contamination of the signal due to the intrinsic
anisotropies [16]. In particular, the intrinsic dipole due to clustering can give a non-negligible
contribution to the total dipole and it has to be properly removed. In [17] the intrinsic dipole
has been subtracted by combining different observables in a galaxy survey. Recently the



physical origin of CMB anomalies has been studied also using the Cosmological Gravitational
Wave Background detectable by future GW detectors [8].

In this paper we have proposed an alternative way to estimate our peculiar velocity, based
on the analysis of the dipole of the astrophysical gravitational wave background (AGWB),
generated by the superposition of unresolved signals emitted by astrophysical sources [18-21].
The recent analysis by LIGO/Virgo/KAGRA [22] has shown that the number of mergers of
compact objects in the local Universe is quite high, for example for binary black holes (BBH)
RBBH(z = 0) = 17.3 Gpc~3yr~!. The population inferred from this local merger rate exhibits
a large enough number of GW sources that can generate a stochastic background that could
be detected by upgraded and future GW interferometers [23—26]. The upper bound on the
AGWRB set by LIGO /Virgo/KAGRA is Qacws < 3.4x 107 at 25 Hz [27]. Such an AGWB is
characterized by a dominant isotropic contribution (the monopole) and by small anisotropies.
AGWRB anisotropies are generated by different effects: The first contribution is due to the
inhomogeneities in the GW sources inherited from the perturbations in the matter distribution
of our Universe (intrinsic anisotropies). The computation of these intrinsic anisotropies have
been performed for the first time in [28-30], while in [31] the authors kept into account for
all the relativistic terms in a general covariant setting. A second contribution is given by the
fluctuations in the number of the sources that generate the background, which follow a Poisson
distribution, generating a SN term [32, 33|. The last contribution comes from the velocity of
the observer w.r.t. the LSS rest frame (kinematic dipole). The AGWB kinematic dipole has
been computed using a coordinate independent and gauge-invariant formalism in [31|. The
dipole induced by the observer motion has been evaluated for the stochastic gravitational
wave background of cosmological origin (CGWB) in [34, 35]. In these works, the kinematic
dipole has been evaluated as a Doppler boosting of the energy density of the CGWB by using
the relative velocity of the observer w.r.t. the CGWB rest frame. In the present work we
have quantified the kinematic dipole in a different way, keeping track of the relative velocity
between the observer and the sources at different redshifts. This computation leads to the
so-called Kaiser-Rocket effect [36], where the kinematic dipole depends on the observer’s
velocity weighted by a Kaiser-Rocket factor, which depends on the Hubble expansion and
on the evolution of the sources in time. We have performed a numerical computation of the
AGWB intrinsic and kinematic dipole for a population of BBH of masses between 2.5 and 100
Mg, according to the latest LIGO/Virgo constraints [22]. We have taken into account all the
terms in the intrinsic dipole, and we have considered redshift-dependent bias and evolution
bias up to redshift z ~ 8.

Even if the AGWB carries a lot of interesting physical information, both on the as-
trophysical and on the cosmological side, the low signal-to-noise ratio at present and future
interferometers could hinder the power of this observable. The main issue in detecting the
anisotropies of stochastic backgrounds is due to the fact that the instrumental noise is larger
than the GW spectrum. The standard way to circumvent this problem is to use matched
filtering, by convolving the signal in the frequency domain with a filter which is chosen in
order to maximize the SNR. This technique has been applied not only to the detection of
the monopole [37, 38|, but also for the polarization [39, 40] and to the anisotropies [41-43|.
While the SNR of the CGWB anisotropies is mainly limited by the instrumental noise, in the
AGWRB case it has been shown that the SN is at least one order of magnitude larger than the
intrinsic anisotropies [32, 33, 44], therefore it would be hard to measure them. The standard
way to reduce the SN is to compute the cumulative SNR for several multipoles or to exploit
the cross-correlation of the AGWB with other cosmological probes, such as the CMB [45, 46]



or LSS [47, 48]. In [47] it has been shown that neglecting the instrumental noise, the cumula-
tive SNR of the cross-correlation between the AGWB and the galaxy number count is larger
than one if we sum the contributions up to fiax 2 10. In our case, however, we would like to
extract information from a single multipole (the dipole) therefore we look for a more efficient
way to reduce SN. So we have exploited the frequency dependence of the three contributions
(i.e., intrinsic, kinematic, and SN) to the AGWB anisotropies to perform component sepa-
ration and to isolate the kinematic dipole with very high accuracy. The underlying idea is
that the AGWB is given by the superposition of the GW signal emitted by binary systems,
keeping into account for all the evolutionary stages of the binary, the inspiral, the merger, and
the ringdown. The inspiral contribution gives a f2/3 contribution to the monopole, while the
other two stages have more complicated parametrizations [49-51|. Since the signals emitted
at different stages do not scale in the same way with the frequency, the window function
involved in the computation of the AGWB anisotropies depends on the frequency, and so the
evolution bias of the GW sources. Thus the kinematic dipole changes in a different way with
the frequency w.r.t. the intrinsic and the SN anisotropies, basically due to the Kaiser-Rocket
factor. This allows us to isolate the kinematic dipole in the same way galactic foregrounds are
removed in CMB experiments [52]. We started by performing component separation in the
ideal case were the instrumental noise is neglected. We have found that it is possible to isolate
the kinematic dipole from the SN and the intrinsic dipole by simply using Internal Linear
Combination (ILC) [53, 54|, reducing of more than a factor 10 the error on the kinematic
dipole estimate due to SN. Using this technique is possible to generate full maps (i.e., sum
of the intrinsic, kinematic, and SN dipole) and to compare the true kinematic dipole map
with the cleaned one from the total signal, illustrating that we are able to separate the three
contributions. Then, taking into account both the SN and the instrumental noise we have
generalized the previous result, deriving a new estimator for the AGWB map. This estimator
has the smallest possible covariance and it allows to remove completely the SN. It has been
derived for a generic network of GW detectors. However, since one of the best candidate to
detect AGWB anisotropies produced by BBHs of solar mass type is the Einstein Telescope
(ET)-Cosmic Explorer (CE) network, we have then derived the kinematic dipole estimate for
ET+CE network [23, 55, 56].

The techniques introduced in this paper are not only useful for removing the SN, but
they automatically allow to disentangle the kinematic and the intrinsic dipoles. Therefore,
for sufficiently large GW monopole amplitudes, we have shown how we can measure, without
spurious contaminations due to intrinsic anisotropies, our local velocity. To our knowledge,
we have introduced for the first time in the GW context a component separation technique to
disentangle different contributions to the AGWB spectrum. In our analysis, we have obtained
SNR = 10 for the kinematic dipole by considering SN only, and SNR ~ 2.5 by considering SN
and instrumental noise for ET+CE. In the latter case, the result can be improved for more
sensitive interferometers and for different sources considered, for example by looking at the
superposition of the AGWB produced by BBH, BNS and BHNS at the same time.

The structure of the paper is the following: in Section 2 we computed the dipole of
the AGWB and the SN contribution; in Section 3 we introduced a new technique to do
component separation and we derived the new estimator for the AGWB dipolar map; finally
in the Conclusions we summarized our results and we highlighted some possible applications.



2 Computation of the AGWB Dipole

2.1 AGWB Anisotropies

The AGWB is generated by the signal superposition of many unresolved astrophysical sources,
which emit GWs with a strain not large enough be detected with SNR larger than a certain
threshold SNRyp,. The value of the threshold SNRyy, depends on the number of interfer-
ometers and on the significance above which we claim a detection [57]. In this work we
have considered the network ET+CE and for the SNR threshold we have chosen the value
SNRypr = 12 [23]. Many astrophysical sources can produce an AGWB, such as rotating neu-
tron stars, core collapse supernovas or compact objects coalescences [21]. In this work we will
focus on BBH mergers with masses within the LIGO/Virgo range. This choice is motivated
by the fact that BBH mergers are expected to be among the dominant source of AGWB, by
looking at the most recent constraints on the BBH merger rate and mass distribution [22].
However, the formalism developed here is completely general and can be adapted to any kind
of discrete source of GWs, such as Neutron Star Binaries (BNS) [58, 59| or even Primordial
Black Holes of both early [60] and late type [61].

The monopole amplitude of the AGWB can be computed by using the energy spectrum
emitted by a BBH system in the inspiral, merger, ringdown phases [49-51],

~ fo dz BBH S . dE -
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fe=(1+z) fo
(2.1)
where the window function of the detector w is related to detector efficiency and it represents
the fraction of sources described by RPBH(z) that are not individually resolved and thus
contribute to the AGWB. In our computation we are also averaging w.r.t. the astrophysical
parameters 6. We have neglected the spin of the BHs since we expect that the spin does
not have a great impact on the signal [62]. What we are doing is basically an average w.r.t.
the mass distribution of the BBHs only. As a mass function, we have considered a Power
Law + Peak model taking into account the latest constraints [22|. However, the validity
of the technique to extract the kinematic dipole from AGWB measurements that we will
present here does not rely on a specific mass distribution. We leave for a future work the
discussion of our technique used in a joint-analysis of the resolved sources and the AGWB,
estimating the astrophysical parameters and the kinematic dipole together. Following [44],
the merger rate has been computed taking into account the properties of the GW hosts:
we look at the cosmic star-formation rate per halo of mass M} at redshift z provided by
UniverseMachine [63], (SFR(M}, z))sF, from which we can derive the merger rate of BBH as

d
RBBH(Z) = AEFGHO /dtd p(td) /th L(Zf,Mh) <SFR(Mh,Zf) >SF; (2.2)

dMy,
where 24 is the time delay between the formation of the binary and its merger and zy is
the redshift at which the binary system formed, z¢(tq,2) = 2(t — t4). For the time delay
distribution we have considered an inverse power-law [64], between t;"" = 50 Myr and the
age of the Universe at the emission of the GWs (%),

p(tg) = In ijr)l) L (2.3)




The halo mass function has been taken from [65], using also fitting formulas from [66, 67].
The normalization factor AEI%HO has been introduced in order to match the local merger rate
with the one estimated by LIGO/Virgo [22], RBEBH(0) = 17.3 Gpe 2 yr~t. ABBIL contains
information about the probability that a star becomes a compact object and that a binary
system of two compact objects forms.

To compute the AGWB anisotropies we have followed the approach of [31, 44], where
the Cosmic Ruler formalism has been applied [68]. In this framework we are able to obtain
coordinate independent and gauge invariant results, keeping into account for all possible

effects along the past GW-cone. In terms of the AGWB density contrast they are given by,

QAGWB(Jfo, n) — Qacws(fo
Qacwa(fo)

where Aagws is the source function that encodes contribution from density perturbations,
redshift-space distorsions (rsd), GR effects, and, of course, the proper motion of the observer
w.r.t. the sources. The window function W weights the contributions of Axgws to dacws
at the observed frequency f, and at redshift z. It is equal to the energy flux of the GWs
emitted by all the sources at redshift z with emitted frequency f,(1 + z), normalized w.r.t.
the background monopole amplitude at f,,

Sacwn (for 1) ) _ [ W) Sncwallia), (29

fo 1 RBBH(2) ~ dEgw 7

pec® Qacws (1 + 2)H(z) /dgp(e)w(z’ % df.dQ. (£e:0) P . (25)

W(z,fo)

When we have two stochastic fields, dx and dy, it is useful to work in Fourier space, in order
to separate large-scale and small-scale contributions,

ox (n, 7) / CE ks .7 (2.6)
,B)= | —=e k). :
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In order to factor out the angular dependence w.r.t. to the direction of observation in the sky

n we expand the Fourier transform of the fields in Legendre polynomials,

AF k) = [ do [ auPut) P55 (0.7, (2.7)

where p is the angle between n and l%, while ¢ is the azimuthal angle in the plane perpendicular
to n. The angular power spectrum of the fields dx, dy can be written in terms of the source

/Y

. X . —
functions A, " for the various contributions,

dk
XY = 47r/kP(k:) AFAY*, (2.8)

with P(k) primordial scalar power spectrum. Typically the angular power spectrum does
not depend on the frequency. On the contrary, in the case of the AGWB, it depends on the
frequency and this allows to reduce the SN as we will show.

The detailed computation of the AGWB anisotropies has been done in Appendix A and
all the contributions to the AGWB /¢-source function are listed in Eq. (A.11).



2.2 Contributions to the AGWB Anisotropies

A vector d generates a dipolar signature in a map when it contributes to the map with a term
like 7 - d, since in the harmonic space this becomes

/dnYﬁm( )i d o Oy (2.9)
The AGWB density constrast map is the sum of three different uncorrelated contributions,

Sacws(f, ) = Oxawa(f, 1) + 03aws(f. A1) + R(f) T, - 71, (2.10)

where the first identifies the anisotropies generated by clustering and GR effects (see Section
2.2.1), while the second one is due to the SN fluctuations of the number of the discrete
sources that generate the background (see Section 2.3), while the third one is the kinematic
dipole induced by the local motion of the observer (see Section 2.2.2). Note that the first two
contributions produce anisotropies also at multipoles larger than one, while the kinematic
dipole term affects only the £ = 1 term for full-sky surveys.

To connect the configuration space with the angular power spectra space we simply
decompose the fields in spherical harmonics,

- / 40 Y () Sacw(f27) = 68w o () + 65 ws o () + 5B m ()

(2.11)
and we compute the angular power spectrum by using

500 0mm C VB (£, ') =(0acwWB e (f)IacwB o (f))

o (2.12)
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Notice that we have a non-zero AGWB angular power spectrum for f # f’: this is the
property that we use to perform component separation of the kinematic dipole contribution.
The plot of the Ci(f, f) term at different frequencies and for three contributions is depicted
in the left panel of Figure 1. We can notice that the SN fluctuations are much larger than the
KD and the intrinsic ones. Since the SN depends on the sources that generate the background,
it cannot be removed by increasing the sensitivity of the interferometers®, therefore we need
to find a strategy to remove it in a statistical way. This is exactly the reason why we will
perform a multi-frequency analysis of the AGWB anisotropies, exploiting the fact that we
have a non-null cross-correlation between the spectra at different frequencies. In the right
plot of Figure 1 we have shown the evolution of the C¢(f, f) spectrum for the intrinsic, SN,
KD contributions, normalized w.r.t. the three contributions evaluated at 1 Hz. In this way it
is immediate to see that the evolution in frequency for the three contributions is very different
for f 2 80Hz. This means that there is no degeneracy at such high frequencies between the
three terms, which means that we can use three different templates in frequency to fit the
observed signal and separate the three components in the analysis. The reason why up to
f = 80Hz the intrinsic, the SN and the kinematic dipoles does not vary with the frequency
(or vary a little and in the same way) is discussed in detail at the end of Section 2.2.2. Even
though this low frequencies would not be useful to separate the kinematic dipole from the
other two contributions, they are useful to reduce instrumental noise, as discussed in detail
in Section 3.4.

! Actually, it is the opposite: if the sensitivity of the instrument increases, an higher number of sources is
resolved, thus less sources contribute to the AGWB and the SN increases.
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Figure 1. Left: plot of the intrinsic, SN, KD, and total contribution to the £ =1 term of the angular
power spectrum of the AGWB at different frequencies, for ET+CE. For simplicity, we did not plot
the Ci(f, f') spectra, with f # f', but we have focused on the auto-correlation only. Right: plot of
the intrinsic, SN, KD contributions to the auto-correlation spectra of the AGWB normalized w.r.t.
their values at 1 Hz. We have normalized the dipoles at 1 Hz to show more explicitly how they change
in frequency. Up to 80Hz the differences between the contributions are very small, but at higher
frequencies the degeneracies are broken and we are able to distinguish between the components of the
spectrum.

2.2.1 Intrinsic Anisotropies

The intrinsic anisotropies of the AGWB, generated by the evolution of cosmological perturba-
tions, include the perturbation of AGWB sources, due to Cold Dark Matter (CDM) density
perturbations, the redshift-space distorsions (RSD), the relative velocities of the sources which
emit GWs, and GR effects due to metric perturbations.

A gauge-invariant computation of the AGWB intrinsic anisotropies has been performed
in [31]. In Appendix A we show that, in the Poisson gauge, the intrinsic anisotropies are

i ~ H 1 1
5X1éWB :/dXW b((sm - 3HV) + (3 - be)HV + <3 - be + ,HQ> v+ ﬁcbl - ﬁaHU”
/ /
+2 <be - % - 2> I— (—be + % + 2) v — %%hff’ninﬁ ,

(2.13)

where b is the GW bias, while b, is the evolution bias and it is discussed in detail in Section
2.2.2. We have introduced the comoving distance y, which is related to the conformal time
through x = n9 — n, with ny the conformal time at the present epoch. The prime here
denotes the derivative w.r.t. conformal time. Similar expressions for the electromagnetic (EM)
analogues have been derived in [69, 70]. Even though from a mathematical point the equations
which describe the anisotropies of the AGWB and of the galaxy number count are almost the
same, on the physical side there are relevant differences. Different observables depend indeed
on a different way from the frequency, and this could be used to perform component separation
between various contributions and to estimate more precisely cosmological parameters.
The angular power spectrum of the intrinsic anisotropies is

. dk . .
CPM(for£3) = 4 [ SEPEAT (o VAP (.. (214)



where the source function Aiﬁm is the sum of the density, RSD, and GR contributions listed
in Eq. (A.11). The angular power spectrum of the intrinsic dipole has been computed with
a modified version of CLASSgal [71] and the result is plotted in Figure 1.

2.2.2 Kinematic Dipole

As for the intrinsic anisotropies, the computation of the AGWB kinematic dipole has been
performed in [31], in analogy with what has been done for galaxies in [69, 70]. As shown
in Appendix A, in the Poisson gauge the local velocity of the observer v, generates a dipole
pattern of the type

7 3H'(n)
fos /d)}W fo, 2 <be forn) — ———~ -3 |1 Uy, 2.15
AGWB( ) ( ) ( ) a(n)HQ(n) ( )
where we have introduced the evolution bias in terms of the energy flux of GWs F' by using
dlnF 142 dF
be(foa ) (f07 ): (f ) (foa >:
- | RBH() SEOW (o)
R (Z) dfedfvlve (fo, Z) dz dfedQe

The evolution bias takes into account the anisotropies generated by the creation of new
sources. In the case of the AGWB the creation of new sources is weighted w.r.t. the energy
emitted by a single source, thus the quantity involved in the evolution bias is not simply the
number of sources, but the flux emitted,

F(fo.2z) = RPP(2)

(fo,2) - (2.17)

There are two strategies to compute the kinematic dipole [72]: The first one consists in using
the known value of the Local Group (LG) velocity measured from dipole measurements of
the CMB, or of quasars or radio galaxies [13, 14, 73|; Another possible way exploits the fact
that the LG motion is generated by the gravitational pull of the surrounding matter in the
Universe. If the density perturbations can be approximated by a linear theory, the peculiar
velocity is proportional to the gravitational acceleration,

t _7 d_,,?“—?"
7t ) e TP

where ¢ is the rate of growth of perturbations computed in [67]. In the above expression we
implicitly require that there is no velocity bias and that the velocity field is mainly determined
by Cold Dark Matter (CDM) clustering. To compute the CDM velocity we use linear theory,
relating it to the CDM density. In the above expression for the velocity field, we have
smoothed rather heavily the density perturbation on small scales [67, 74]. In this way there
is a one-to-one correspondence between redshift and distance [75] and it removes the issues of
large velocity dispersions due to the breakdown of linear theory at small scales. The estimates
of the two approaches converge in the limit in which the galaxy survey covers a large enough
volume. The real observer velocity in a GW experiment is the sum of the LG velocity plus
the relative velocity between the Milky Way and the LG, plus the relative velocity of the Sun
w.r.t. the Milky Way, plus the relative velocity of the Earth w.r.t. the Sun. These corrections

o (t, ), (2.18)



on the observer velocity are non-negligible, since the Sun motion w.r.t. the local group has
about half the amplitude and opposite direction w.r.t. the LG velocity, which implies a lower
kinematic dipole [9, 76]. The angular power spectrum of the AGWB kinematic dipole is
therefore

dk %
CIP (for 1) =t [ FPOIAID(for WVAED* (£, ), (219)
where the source function of the kinematic dipole has been computed in Eq. (A.11),
0™ : H'(n) 1
ARP(f k) = 4 / dnWll, £, [bm 0at) — ———2— — 3| =0, ,(k), 2.20
¢ (fo k) s0+1), (n, fo) b (for 1) O H2() 3 Omo(k),  (2.20)

with 0, 0(k) = 0, (10, k) related to the velocity field of CDM @ through

In this work, we are computing the angular power spectrum of the kinetic dipole by using
the velocity computed in Eq. (2.18), which is the velocity of the LG obtained with linear
theory. As discussed before, we are not considering the motion of the Earth, of the Sun and
of the Milky Way. These relative motions generate a Doppler shift in the angular power
spectrum of the AGWB measured in the LG frame which can be studied with the formalism
discussed in [35]. In our work we study the AGWB kinematic dipole by considering only the
LG velocity, assuming that the other velocities have already been subtracted. Due to this, the
dependence on the scalar product 7 - U, in the AGWB density contrast or, equivalently, the
dp1 factor in the source function, differs from [35], where the kinematic dipole of the AGWB
is evaluated as a Doppler boosting with the relative velocity of the observer w.r.t. the AGWB
rest frame. The result of the two different approaches should converge in the limit of a SGWB
generated on the surface of a sphere, as it is the case of the CMB. However, our computation,
based on the Cosmic Rulers formalism [68], takes into account both the emission of GWs at
different times and the different velocities of the emitters. The former effect is encoded in the
Kaiser-Rocket factor, (see [77, 78] where this definition has been used to study the dipole in
the LSS)?,

R(fo) = /an(vao) |:be(f0777) - CML;;J%

which represents a Doppler boosting over many infinitesimal shells, one per each 7. This is
similar to what has been done for the computation of the kinetic dipole of other astrophysical
observables in the literature, e.g. for the EM analogue [16, 69, 70]. The latter effect is
encoded in the redshift-space distorsion (RSD) term, which contributes to the source function
of the AGWB intrinsic anisotropies, Aiént. As already stressed in Section 2.2.1, even though
there are analogies in the mathematical expressions between the EM case and the AGWB
kinematic dipole computed in [31], there are crucial physical differences, such as the frequency
dependence of the observables that will be exploited in the statistical analysis of the dipole.

The frequency dependence of the kinematic dipole (in general this is true for all the
anisotropies related to the AGWB) is due to the fact that the stochastic signal considered
here is the superposition of the signals emitted by BH binaries of different masses, at differ-
ent redshifts and at different stages of the evolution of the binary. This means that when
we observe the AGWB anisotropies at a frequency f,, at redshift z a binary system with

-3/, (2.22)

2In literature, it is also called “Finger of the observer” effect, e.g., see [76].



parameters M; and My contributes to the background with a frequency fo = (1 + 2)fo.
To different observed frequencies would correspond then different emitted frequencies, which
could in principle correspond to GWs emitted at different stages of the evolution of the bi-
nary, therefore the energy spectrum integrated w.r.t. all the astrophysical parameters at the
redshift z is different for different observed frequencies f,. Since we cannot factorize the fre-
quency dependent part of the energy spectrum with the redshift dependent one, the window
function W and the evolution bias b, depend on the frequency in a non-trivial way. To be
more clear, if we would have considered only the inspiral phase of the binary, the integrated
energy spectrum would have been

dEgw
dfed(Qe

dFE
= /dM1dM2p(M1,M2) df%(Ml,M% for2) o f 131+ 2)7 13,
(2.23)

Therefore, since the monopole amplitude goes as Qaqws o ff / 3, the window function, which
depends on the combination

fe=(142)fo

W(Z) x fo_(dEGW/dfe>
Qacws(fo)
would have been independent of the frequency. The same argument holds for the evolution
bias. This is basically the reason why in Figure 1 the intrinsic, the SN and the kinetic dipoles
have the same frequency shape for f < 80Hz, where all the objects with masses between
2.5 Mg and 100 M emit GWs during the inspiral stage. The fact that we cannot disentangle
the redshift and the frequeny dependence comes from the fact that we are summing the energy
contributions from the inspiral, the merger, and the ringdown,

dEcw dBcw ;
= dMydMsy p(My, M. My, My, fo,2). 2.24
df,dQ, fe:(1+Z)fo(Z) j:%:/m/ 1d M p(My, My) dfedQe( 1, Ma, fo,2) (2.24)

In Figure 1 we have plotted the diagonal part of the dipole spectrum, the CEP(f, f) term
computed in Eq. (2.19), as a function of the frequency. The features of the spectrum are
determined by the Kaiser-Rocket factor only.

In this section, we have computed the angular power spectrum of the AGWB kinetic
dipole, Cy(f,, f}). We want to stress however that in order to generate the AGWB kinematic
dipole map, it is sufficient to generate the AGWB map at a given frequency f,, because the
kinematic dipole at any other frequency is univocally determined. This can be seen by the
fact that the correlation between two kinematic dipoles at different frequencies is exactly one,

CEP(f1, f2) __ RUIR(R) 1 (2.25)

VP K1 f2) RGP R

therefore, from a statistical point of view, the two variables are linearly dependent. From a
more physical point of view, one can argue that the kinematic dipole is induced by the velocity
of the observer 7, which depends on the matter distribution, but not on the frequency of the
observed GWs. Any information about the frequency of the GWs is indeed encoded in the
Kaiser-Rocket factor that can be factorized.

r*P(f1, f)

2.3 Shot Noise

Since the AGWB is generated by the superposition of unresolved astrophysical sources, it
is naturally affected by SN, because the sources are discrete events which follow a Poisson
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distribution [32, 33, 79, 80]. The variance associated to the expected number of processes
corresponds exactly to the SN.

Following [44], the mean number of GW events per halo is essentially the merger rate
of objects per halo, times the probability of having a merger after a time delay t; w.r.t. the
formation of the binary, and times the observation time,

dv

Newn(Mp, z,tq) = p(ta) ALico (SFR(Mj, Zd)>SFTobsm(Z) ;

(2.26)
where Ar1co is the LIGO normalization on the local merger rate and dV/dz is the volume
element which converts the number density to the number of objects. In the above expression
z is the redshift at which GWs are emitted, ¢ is the time at redshift z and zg is the redshift
at t — tg°.

The AGWB anisotropies are described by

1 1 dE

DET
Oacwa(®, fo) = QAGWBTobS pec? | H(2)(1 +z) (dV/dzdQ) (z) dQ.d 7 fow Rz
dn Newin(Mp, z,t3) = Now i (Mp, 2, ta)
dM dtg——— (M, = .
X/ h/ dth( h 7a) Newn(Mhn, 2, tq)

(2.28)

Since the fluctuations due to SN are uncorrelated with fluctuations due to cosmological per-
turbations, there is no cross-correlation between the SN and the intrinsic anisotropies. The
only contribution given by SN is due to fluctuations of Ngwj,, which follows a Compound
Poisson Distribution, whose covariance has been computed in Appendix B. The SN angular
power spectrum is independent from the angular scale ¢ considered and it is equal to [44]

AGWB,S
C, WESK <5AGWB>SN
1 1 dE 2
= ” H2(z < Q Q (2, fo)w Pl (2 ))
0% awnTobs Pcc (dV/dzd )(Z)d edfe

(2.29)

We have depicted the dipole power spectrum of the SN for T,,s = 10yrs in Figure 1. As
already stressed, the SN is approximately two orders of magnitude larger than the kinematic
and the intrinsic dipoles. The result is consistent with [33, 44].

There are several strategies to reduce the SN. The first one exploits cross-correlations [46],
which allows in general to obtain higher SNRs w.r.t. the auto-correlation case. However, if
the SN is some orders of magnitude larger than the intrinsic anisotropies, as in our case, it is
hard to cancel this contribution by using few tracers only. Alternatively, one could use new
statistical estimators [32], to cancel the offset in the estimate of the angular power spectrum

3To compute z4 we invert the relation

= 1
td = — Ld dzm . (2.27)

We consider t4 between 50 Myr and the age of the Universe [64]. Note that for very high redshifts the SFR is
zero, thus the imprint of very high z4 on the AGWB is zero too.
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and to reduce as much as possible the SN.

As a new method, we will try to reduce the SN by correlating the AGWB anisotropies at
different frequencies, exploiting the different dependence on the frequency of the SN and of
the intrinsic w.r.t. the kinematic dipole.

3 Component Separation of AGWB Anisotropies

3.1 Detectability of the Kinematic Dipole

In this Section we want to give an estimate of the detectability of the AGWB kinematic dipole,
by using an SNR analysis. We want to show that in principle, if one ignores the frequency
dependence of the AGWB anisotropies in an SNR analysis, a detection of the kinematic dipole
(and of the other anisotropies too) would be more challenging. If we consider BBH mergers
in the mass range of 2.5 — 100 M), the most promising experiment to detect the anisotropies
of the AGWB is the network obtained by the combination of ET and CE, because with the
current bounds on the amplitude of the AGWB monopole, Qagws < 3.4 x 1079 [27], aLIGO
has a too low sensitivity [44]. Therefore, from now on, we will focus on the ET+CE case only
and we compute the noise angular spectrum using the Schnell code [41].

To quantify the amount of physical information that we can extract by studying the
AGWRB dipole we consider as observable the angular power spectrum of the auto- and of the
cross-correlation of the AGWB with a galaxy survey, by choosing a specific survey in order
to maximize the correlation and so the SNR. One suitable survey to be combined with the
AGWB is SKAO2, and in Appendix C we report the parametrization that we have used. We
will not compute the SNR of the auto-spectrum of the galaxy survey, which is larger than
one, since we are interested in discussing only the extra-information we can add by looking
at the AGWB.

The SNR is defined as the ratio between the signal we want to measure and the noise
of the detector,

émax
SNR? =)~ C/Feov, ' Cy, (3.1)
(=1
where f,,x identifies the maximum multipole at which we have a non-negligible contribution
to the SNR. The vector Cy represents the observables we are looking at,

. CAGWB
Cy= (ngAGWB> ; (3.2)

while covy is the covariance between the pseudo-CY’s estimators we are using for the angular
power spectrum. We can write the SNR as the sum in quadrature of the SNRs at a given
multipole, because for GW experiments fqy ~ 1, thus we have no mode-coupling between
different multipoles. The covariance of these estimators is given by the sum of the cosmic
variance and of instrumental noise plus SN,

5 (Ci+ N})? @+m(@“+wm)
V= o ; ; i i (CP N CJ+NJ)(CZ+NZ) ’ (3.3)
L@+ N (0 + i) —
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where we have used the compact notation i = AGWB, j = g (i.e., galaxy). For the noises in
the covariance we have considered

NKAGWB :CAGWB,SN + NéAGWB,mst

4 Y
7 p— (3.4)
Ng
X AGWB x AGWB,SN
N =N} ,

where 1/N, 4 is the SN term for the galaxy survey and it represents the total number of galaxies
observed, while NV, ég XAGWB,SN 4o the SN of the cross-correlation between the galaxy number
count and the AGWB [47, 48]. In this computation we have however neglected the impact on
the SNR of the SN of the cross-correlation, since we want just to show that by looking at the
dipole at just one frequency the SNR is much lower than one. Note that in this preliminary
computation we have assumed that the integrated response of the instrument can be written in
terms of an angular power spectrum. However, in Section 3.4 we will quantify more properly
the instrumental noise and we will define a more general estimator for the kinematic dipole,
which minimizes both instrumental noise and SN.

In Figure 2 we have depicted the cumulative SNR of the various contributions to the
anisotropies as a function of the maximum multipole considered. We have also plotted the
various contribution to the SNR up to £.x = 200 as a function of the monopole amplitude
of the AGWB. Note that when instrumental noise is considered, different choices of fyax
above a certain value do not change the SNR, since the instrumental noise automatically
keeps into account for the angular resolution of the detector. We have computed the SNR
in three different scenarios: with instrumental noise only, with SN only, and with SN plus
instrumental noise.

3.2 Multi-Frequency Observations
The total AGWB map at frequency f, is the sum of four contributions,

OREWB.am (for 1) = 61 OAGWB.am (for 1) + OAGWB. am (for 1)+ 0RGWB.om (for 2) F i (fo) , (3.5)

where the kinematic dipole term and the intrinsic dipole term contain the astrophysical and
cosmological information we would like to extract, while the other two represent a source
of uncertainty in our measurements. As discussed in Section 2.3, the SN is larger than the
kinematic/intrinsic anisotropies, therefore it could be a limitation for future GW experiments
that plan to look at the physics beyond the monopole of astrophysical backgrounds. At the
moment, in the literature the only discussion regarding the SN of the AGWB has been done
in 32, 33, 44, 47, 48|, without providing a valid solution to deal with this issue. On the
contrary, many techniques have been adopted to reduce instrumental noise at GW interfer-
ometers and they exploit the fact that instrumental noise has a different dependence on the
frequency w.r.t. the signal, therefore it is possible to choose some proper weights to 5/0beSWB
at different frequencies to minimize the covariance of the AGWB map estimator.

As stressed in Section 2, the AGWB angular power spectrum depends on the observed fre-
quency f,, due to the dependence of the window function W and the different GW bias
and GW evolution bias. The key point here is that the four contributions to the total ob-
served signal depends on the frequency in a different way, therefore it should be possible to
break the degeneracy among them by combining the observation for all the available spectra.
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Figure 2. Plot of the contributions to the cumulative SNR as a function of the maximum multipole,
with SN only (upper left), with instrumental noise only (upper right), with instrumental noise plus SN
(lower left). The blue line corresponds to the kinematic dipole, the orange one to the intrisic dipole,
the green one to the intrinsic anisotropies and the red one to the total. When instrumental noise is
considered, we have computed the cumulative SNR assuming the maximum monopole amplitude for
the AGWB at 25Hz, Qacws = 3.4 x 1072, Lower right: plot of the cumulative SNR for max = 200
as a function of the monopole amplitude of the AGWB, considering both instrumental noise and SN.
We have considered l.x = 200, because, when we compute the SNR with instrumental noise, we
automatically take into account the angular resolution of the detector, therefore higher multipoles give
negligible contribution to the SNR. All the SNRs have been computed for the auto-correlation of the
AGWB and for the cross-correlation between the AGWB with the galaxy survey SKAO2. The SNR
computed here does not include the auto-correlation of the galaxy survey, because we want to quantify
the amount of extra-information added by considering also the AGWB in the analysis.

Note that the same procedure is used for instance to remove galactic foregrounds from CMB
maps [52, 53]. The most commonly used technique to extract the kinetic dipole is to com-
bine different observables [17], in order to remove spurious contributions from the intrinsic
dipole. For the AGWB it is however natural to use a component separation technique based
on multi-frequency observations, because the intrinsic anisotropies and the SN have the same
frequency-dependence, because the window function W is very similar to the kernel, which
determines the frequency dependence of the SN. This means that, if we introduce an estima-
tor to minimize the covariance of the kinematic dipole, we would be able to remove, at the
same time, the intrinsic dipole and the SN, because of their similar frequency shape.

In this section we will start showing how we can reduce SN and the intrinsic anisotropies
contribution in the kinematic dipole estimate by combining the AGWB at few discrete fre-
quencies. For the moment we will neglect instrumental noise, which will be included later on.
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This part should be useful to intuitively understand the validity of our method and to justify
the next step, where we will combine instrumental noise with the total AGWB signal, writing
down an expression for an estimator of the kinematic dipole map with minimum covariance.

3.3 Component Separation with Multi-Frequency Observations

In this section we want to separate the different contributions to the AGWB by using obser-
vations of the anisotropies at different frequencies.
The SN for two frequencies f1, fo, given the window function w(z), is [44]

(pcc2;obs)2 /dz {(1 + Z)H(Z;

where the frequency kernel K and the SN fluctuation at redshift z are

NN(f1, f2) =

2
(dV/dz)(z)} K(z fi, f2)8(z), (3.6

_ fifa > >
K(Z’fl?fz)_QAGWB(fl)QAGWB(f2) /d9 p( )dfedQe(ejz’fl)
dE - L2
% iraa, @ h) [w(e,z)} , (3.7)

dn _ _
5(2) Z/th/dtd m(Mh,Z) [NGWh(MhaZ,td) +NéWh(Mth’td)]a

and the average number of GW events per halo of mass M}, at redshift z has been defined in
Eq. (2.26). The S(z) factor encodes the information about the SN fluctuation of the number
of GW sources, while the K(z, f1, f2) factor weights the contribution to the signal of GW
sources with different masses (in general with different astrophysical parameters) in the given
frequency bin. The intrinsic anisotropies of the AGWB depend on the frequency through the
window function W defined in Eq. (2.5), therefore, as a first approximation, neglecting other
possible frequency dependencies due for instance to the GW bias, we can assume that the SN
and the intrinsic anisotropies are very similar and cannot be disentangled with this technique.
On the other hand, the dominant frequency dependence contribution of the kinematic dipole
is given by evolution bias, which depends differently on f, w.r.t. W.

Intuitively, what we are saying is that is we look at two maps at frequencies fi, fo the map
observed at fy is constrained by the map observed at fo by a mean and a covariance given by

ue (il ) =SEU ) sy

C3(f2, f2)
« _ o [C?(f17f2)]2
Cy(filf2) =C¢(f1, fr) (o fa)

with @ = {int, SN, KD}. The idea is that if we combine the two maps in a proper way, we
can cancel the SN bias, and the resulting map will have covariance given by the covariance
of the conditioned maps. The point is that if this covariance is sufficiently small, we are able
to reduce the impact of SN on our KD estimate. Note that if the kinematic dipole and the
SN would have the same frequency dependence, we are not able to separate the two maps,
because the linear system would be degenerate, which is approximately what happens for the
SN and the intrinsic anisotropies.

The generalization of what we have described for more than two frequencies and with a more
formal derivation of the estimator, is the Internal Linear Combination (ILC) [53, 54|, or any

(3.8)
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other kind of component separation technique.
The ILC does the following: suppose you have some maps at different frequencies, from which
you extract the dipole

@ = d + AP+ (3.9)
where the vectors refers to the different frequencies, while the index ¢ represents the x, y, z

directions in the sky. The dipole at a pivot frequency fpy is related univocally to the velocity
of the observer through the Kaiser-Rocket factor defined in Eq. (2.22),

diP(f) = R(f)vos - (3.10)
Therefore the total signal is _
AP = Rugi + d;™ + d N . (3.11)

Since the AGWB anisotropies are measured at different frequencies, we can combine the data
in a smart way to find an estimator of the observer velocity with a small covariance. This is
done by writing down the most general linear estimate of the observer velocity,

o = w!dO>, (3.12)

and by choosing the weights @ of the linear combination that minimize the covariance of the
estimator,

% <(ﬁo,i - Uo,i)2> =0. (3.13)

We require also that our estimator is unbiased, therefore in order to have 0,; o v,;, we need
that W' R = 1. To minimize the differential equation with a constraint we use a Lagrange
multiplier. We introduce the Lagrangian function £,

Lz, )) = <(@O7i - voﬂ-)2> —A (wTﬁ - 1) = aTCw — X (wTﬁ - 1) . (3.14)
where C' is the covariance matrix of the total dipole, where its («, §) entry is defined as,

Cag = cov |d™(fa), 8™ (f3)] = CF(far f3) + CT (fas f) (3.15)
We impose that the Jacobian of this function is zero, finding

{wTﬁzl {J)T:é)\ﬁ:rcq {)\: 2

RTQ-1R (3.16)
=T 5T _ INpT—175 _ -7 _ RTc1
20°C — AR =0 5)\720173—1 T

w = S =
RTC-1R

The estimator of the observer velocity is then computed by substituting in Eq. (3.12) the
weights w! computed above,
RT (1 obs
RTCIR

The error associated to the estimate is

1
O 5 —v VN = VT O - —
Oy = <(vo’Z ’UO’Z) >— wt Cw = STo = . (3.18)

We have computed oy, ; for different f, varying both the total number of frequencies in the
ILC analysis and the combination of frequencies, looking for the one with the minimum error.
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We have compared the analytical estimate of the ILC error, Eq. (3.18), with the Root Mean
Square of M = 10? realizations of the system. More specifically, we have generated M realiza-
tions of the SN, of the intrinsic and of the kinetic dipole anisotropies. These are uncorrelated,
therefore the total map is simply the sum of the three maps generated independently. We
then apply the ILC to each of the M maps, finding %', which can be compared with the ¥,
true value, which is given by the realization of the kinetic dipole anisotropies divided by the
Kaiser-Rocket factor.

In order to show how powerful this technique is, we show explicitly the result of our anal-
ysis for one single realization. We have N = 42 frequencies evenly spaced over the interval
[100,1000] Hz. Compared to the input value we find the following estimate

7, = (0.0018 0.0032 0.0002) ,

—~est (319)
5% = (0.0020 0.0031 0.0002) + 0.0002.

The velocity here has been computed in natural units, ¢ = 1, and it represents the velocity of
the LG generated from the power spectrum of the density field evaluated at the present epoch.
Up to statistical fluctuations due to the fact that we are generating a Gaussian random field,
the input velocity ¥, is consistent with the LG one estimated by Planck, v, &~ 600km/s [4].
As stressed in Section 2.2.2, in this work we are interested in providing a useful tool for the
statistical analysis of the AGWB kinematic dipole, therefore we assume that the velocities of
the Earth, of the Sun and on the Milky Way have already been subtracted before performing
this analysis. Their net effect is a Doppler shift in the angular power spectrum of the AGWB
in the LG rest frame, that can be studied in detail as discussed in [35]. In Figure 3 we
have given a map explanation of what we are doing: we have plotted the observed map at
f =30Hz, 5Xb§WB, the “cleaned” velocity map, 7 - 7%, and the input velocity map, f - 0,. We
can see that without component separation we are not able to distinguish the kinematic dipole
imprint on the AGWB dipole, because the SN is much larger, but after our multi-frequency
analysis, giving proper weights to the different maps, we are able to disentangle the different
contributions, finding that the reconstructed map and the input one are similar at percent
level.

To conclude, we have computed the SNR for our new estimator,

SNR? = 4] covy o ¥, (3.20)

4

where covirc in this case is simply a diagonal matrix with entries o3, , defined in Eq. (3.18).
The result we have found is SNR = 10, therefore we are able to faithfully reconstruct the
local velocity of the observer by considering SN only.

The key assumption we have done here is that we are able to know exactly the Kaiser-
Rocket factor R(f) and the theoretical values of the angular power spectra of the SN and of the
intrinsic anisotropies. This is of course a simplification, since there are several uncertainties in
the astrophysical models which described the formation and the evolution of binary systems.
However, the point we want to stress is that future detectors like ET will be able to detect more
than 10° sources [82], shedding light on the population of compact objects in binary systems.
In addition, the component separation introduced here can also be done in a joint-analysis
of resolved sources and AGWB. In this way one could marginalize over (some) astrophysical
parameters, propagating the error bars on the final estimate of the kinematic dipole.

4We have decided to quantify the amount of information on the kinematic dipole we can extract from the
AGWB anisotropies in terms of this SNR, summing over all the components in real space of the observer
velocity.
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Figure 3. Upper Left: AGWB density contrast map at f, = 30 Hz; Upper Right : input velocity map
i - Up; Bottom: reconstructed velocity map 7 - 055,

3.4 AGWB Kinematic Dipole Estimate with Shot Noise and Instrumental Noise

Now we want to generalize the previous computation to derive the best unbiased estimator for
the AGWB kinematic dipole, keeping into account also the instrumental noise. To combine
SN and instrumental noise, we use the code Schnell, therefore here we will use the same
formalism of [41]. The AGWB is described by

Z/df/dnh CEAE AR (3.21)

where p is the GW polarization and 7 the direction of observation. The data measured by a
detector A at position Z4 for an observation time T is

dar(t, f) ~ /anFP R)RCY(f,R) +nar (3.22)
where we have introduced
Fi = agep e~ EA (3.23)

with ai{ the detector response function. Note that for the AGWB h;ff’t is the sum of three
contributions,

hyt (F,7) = hy P (f. ) + by (f.0) + By (£, 7). (3.24)
The power spectrum of h,, is
(.3t () = Sa(r = 2= 1) (3.25)
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where we have assumed that the only non-null Stokes parameter is the intensity, therefore
we are legitimated to introduce d,,,. The amplitude of the AGWB is related to the intensity
through [28, 83|

47 f3

Qaw(f,n) = Qaw(f) 1 +daw(f, )] = B2

I(f,7) . (3.26)

As stressed in Section 2.2.2, the frequency dependence of the AGWB kinematic dipole inten-
sity can be factorized,

kb o Qaaws(N/FP CIVPEPE f)
==, f )_QAGWB(fpiv)/fgiv CROWBED (o fpiv)l (#, foiv) (3.27)

=E"P(f, o) Ipiv (),
where EXP(f, fyiv) is related to the ratio between the Kaiser-Rocket factors at two frequencies,

Quaws(f)/f*  R(f)
Qaaws (foiv)/ iy R(foiv)

EXD(f, fory) = (3.28)

We have plotted the intensity of the kinematic dipole as a function of the frequency in Figure
4. In this work we do not consider /propagate the error associated to EXP, but we restrict to
the case in which we fix its value. This assumption is not important for our conclusion and a
proper way to deal with uncertainties associated to the astrophysical sources is described at
the end of Section 3.3. Now we want to build an estimator for the kinematic dipole intensity

III)E\]?( 1), which is related to the velocity of our frame by

IEY () = R(foiv) o+ U, - (3.29)

A linear estimator in the dipole corresponds to a quadratic estimator in the strain. In our
case the optimal estimator is [41-43|

Ipr 0 — Z df,AEgi;Bdf’,B - b6’ ) (330)
AB,f,f'

where the matrix E' and the vector b have to be determined by minimizing the covariance
and by reducing the bias. In the formalism we are using here the maps are written in terms
of discrete pixels 6, which correspond to different directions of observation in the sky. More
specifically, in our analysis we have used Npixel = 30725, thus each pixel corresponds to a
region of the sky of area AQ = 47 /Npixel. Even if we are working in pixel space, our discrete
approach is consistent with [42, 43].

The covariance matrix of the data, defined in Eq. (3.22), is

AB,KD Iln} I of
+ ZB < p1V0 ngD)] ) (331)

5This is equivalent to Nsige = 16 in a Healpix map.

1o [
2Af

(dyady ) =
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KD/int/SN

where I, are the theoretical kinematic dipole/intrinsic/SN maps respectively, N }43

is the Power Spectral Density (PSD) of the noise of the interferometers, while the matrix B
is

ABKD __ KD
Big = AQES Z o 10 510 - (3.32)
The mean of the estimate that we have found is

<Ip1V 0> Z <df7A df’,B>Eg,fAB - bg =

AB.f.f
o - E f BAB KD I}n;’ If 0’ Eff NAB inst —b

Z 2Af GABZ 1,0 p1v0/ T gKD + Z oA f 0,AB*V f 6

A,B.f I AB.f

(3.33)
from which, requiring the estimator to be unbiased, the bias has to be equal to
1
_ ff AB 1nst

A’B?f

The bias we have defined here depends on the instrumental noise only, while the bias given
by the SN and by the intrinsic dipole is reduced by the Eg 7" coefficients. More specifically,
we will try to minimize the covariance associated to our estimator and this will give us the

full expression for Ef 7

IKD

Note that our estimator IXP piv.0 18 related to the true kinematic dipole piv.0

tiplication in pixel space, therefore the truly unbiased estimator is

IPIV 0 — Z (M )09/ Iplv 0 (3.35)
0/

by a matrix mul-

where the matrix M is defined by

_ ff pABXD
Moy = > QAfEe WeBie - (3.36)
AB.f
As in the ILC case, we want an unbiased estimator, therefore we require that Igfnl? I}Ifl?@,
which means that Myy is diagonal in pixel space, which implies that
Mggl = 599 — Z 2Af gQBB}ng KD _ 599/ . (337)
AB,f
Therefore, the mean value of our estimator can be written as
Iy + 135
<Ip1v 9> <Ip1v 9> Ipr 6 +ons 2Af Z Tr <Effo0’ ) W : (338)
1.0’

The covariance of our estimator is computed w.r.t. the data d4 ¢, but there are two different
sources of covariance. The first source of error is given by the fact that the signal A measured
at interferometers has zero mean and covariance related to the intensity (monopole ampli-
tude) of the stochastic background considered. This source of error has to be summed in
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quadrature with the error given by instrumental noise, which is supposed to be dominant in
many scenarios, but not here, because we know that the SN plays a significant role in the un-
certainty of our measurement. Therefore we will keep the covariance matrix as much general
as possible. The covariance associated to fluctuations of the strain amplitude h is computed
assuming that the noise and the signal are Gaussian, therefore the four-point function of the
strain can be written as the sum of the product of two-point functions,

KD ’
cov (Ipw 0> Ipw 9l>h :< A f Z dy, AE9 ABdf’ Eg,{élB<df,Adf’7B> x
ff,AB

1 // " // 111
X — Z df// CEg, CDdf/// D — E , CD<df" Cdf”’ D> =
2Af f//f/// CD

1 / 1" 11
EINGE Y. EhpEylp ({dradp pdgn cdgr p) = (dpadp ) (g cdprp)) -
ST

(3.39)

Now we note that when we take the four-point function by coupling A with B and C' with
D, we obtain a term that cancels the second one in the sum. If we define the total covariance
matrix of the strain as

in SN
GAB _ BABXKD [ /KD If,g’ + Ifﬂ’ 4
f + Z fo' pr 0 + SKD y (3. 0)
f

we have that the covariance generated by fluctuations in A is

1 / 1" e
_ § : ff ff AC ¢BD AD gBC
COoVvV (Iplve’lplv 9/) = (2Af)2 EG ABEOI,CD (Sf Sf/ 5ff//6f/f/// —+ Sf Sf’ 5ff///5f/f//)
ff/ f/l f///
_ ff I'f
= QAfz ZTf (SfE Sy By ) : (3.41)

The contributions to the matrix Sy are plotted in Figure 4. There is another source

of error in our estimator: here we are not trying to estimate just the total map I, ot but
we are trylng to perform component separation between different contributions in the map
This point is crucial, because in this step we want to quantify the amount of uncertainty in

our measurement provided by the SN. In our analysis we have an estimate for the kinematic
dipole I}Ifl\]?e whose mean value <Ipw g) differs from the true map I}If“]?g because of SN and
intrinsic anisotropies. These fluctuations are quantified by the cosmic variance and they can

be computed in the following way,

o (22)-(20))  ~( (B2~ 02 (e~ 220 -
cv cv

1 0t + 155, 1 I8 4+ 1500
= ——Tr (EffB ) £ L (Eff BYY ) e ST
<§ 2Af 1o EKD f%: 2A f e £XD

C}‘I}'tlygllelll + C?llf\‘jl,gllelll
KD ¢KD ’
EXDEK

1 £ 5
= (QAf)Z Z Tr (E Bfg//) Tr (E Bf’B”/)
f.f.0101

(3.42)
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Figure 4. PSDs of the noise of the detectors ET, CE1, CE2, and of the possible cross-correlations be-
tween the ET channels. We have plotted also the intensity of the SN at different frequencies. Note that
SN (and so the signal) are much smaller than instrumental noise, but with this (standard) technique,
we are able to clean the signal.

where the covariance matrices in the last row are related to the angular power spectra through

C o = (2L +1)CI(f, [P, (3.43)
Y4

with P, the Legendre polynomials. Note that here we have assumed that the SN and the
intrinsic anisotropies are uncorrelated. So, the total covariance matrix is the sum of the two
covariance matrices found before, because they are uncorrelated,

1 / /
COVggr = Z 2Af2 TI' (ng SfEef,fo/) +
I
1 1 gl Cint/ ngm + CSN/ 1o
Jf pKD I'f' pKD f1.,0"0 f1.,0"6
+ W Z Tr <E0 Bf}@”) Tr (E@, Bf’,a”') ( S‘II‘_(Dg;_(D .
0//,0/// /

(3.44)
From now on we neglect the intrinsic anisotropies for three reasons:
e the intrinisc anisotropies are at least two orders of magnitude smaller than the SN;

e the intrinsic anisotropies have almost the same frequency dependence of the SN. There-
fore if the SN will be reduced by this component separation, probably also the intrinsic
anisotropies will be;

e from a numerical point of view, we can compute the covariance matrix of the SN for
many frequencies in a fast way. However, to compute the covariance matrix of the
intrinsic anisotropies, would require more computational power. This would not have a
large impact on the technique that we are proposing and would be beyond the scope of
this paper.
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By neglecting the instrinsic anisotropies the computation is simplified, because the SN is
proportional to dgrgn (the angular power spectrum is constant in ¢), therefore the covariance
matrix becomes

CSN
ff f'f 11 f'f ff
COVgy! 2Af2 Z Tr (E SfE ’ Sf/) ZTI' (E Bf 0//) Tr (EG/ Bf’ 0//) W
1t 0" oo
(3.45)
Using a Lagrange multiplier we minimize the covariance,
— ff
L= COVggr — Ag QAf ZT (E Bf9’> — 599/ s (3.46)
and by imposing that the derivative of £ w.r.t. Ef,f;‘B is zero we have
ACpI'f gDB ‘5ff’ KD.ABm. (o f" " pKD C?fN’ ABKD
Z Sf E9 CDS Z Bf 9// ( 0 Bf//jg//) 5KDEJI£<D Af)\gdff/Bfﬂ ’ =0.
f.6" "
(3.47)
Without writing explicitly the detector indices, we have
SiEN S, + 01 N~ D 1y (BT B G _ — AfAgd;p BED 3.48
! =5 D BigTr ( 6 P 9”> EKDEED FrodspBig s (3.48)
f// 0// f//
so, when f # f/, we find
S;EI =0, (3.49)
which means that ng/ =0 or that ng/ belongs to the kernel of Sy.
For the moment we are interested in f = f’, therefore we find
it 7f Cip
1 -1 "f" KD i —1 pKD g—1
E + = Z S Bf 9//5 Tr (EG' Bf”,@”) W Af)\gsf Bf’g Sf . (350)
f// 9" "

Motivated by Figure 4, we solve this equation in perturbation theory, expanding at first order
in C%}I,,. The zero order solution is

EJTO = AfaS7 BEPST (3.51)
Now we substitute this solution in the trace, finding that the first order solution is
) Cyy
_ 1 1 1 ”
E0 = —*Af)\g Z S Bf 9//5 ’I‘I' (Sf” f//gsf// Bf// 9//) W (352)
1.6 "
The full solution is simply given by the sum of the two contributions,
it iy
_ —1 pKD ¢—1 1 1 1 "’
EG = )\9 Af Sf Bf,@ Sf Z S Bf 9//5 Tr <Sf” f”GS 7" Bf” 9//) W
f// 0// "
(3.53)
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To find the parameter Ay we use the condition given by the Lagrange multiplier with 6 = ¢’,
—1pKD ¢—1 pKD -1 pKD ¢—1 pKD
2 Zf Tr (Sf Bf76//Sf Bf70 ) T‘Il (Sfll Bf//GSf/l Bf//,e//) C.?‘l}(\}//

- —1 pKD ¢—1 gKD , - 2 EXD KD’
ST (STUBERST I BSR)  fr 5, T (571 B5D 57 BD) | i
(3.54)

Ao

and the final expression for the weights to give to the signals measured at interferometers are
By _ 257 "B
Af —1pKD ¢—1 KD
Iy (57 B S; BYY)

—1 RKD —1 pKD —1pKD ¢—1 pKD
Tr (Sf/ Bf/,allsf’ Bf/,e) Tr (Sf// Bf//gSf// Bf//,e//) C‘?/l\}//

—1 pKD og—1
+SBERST Y

2 KDcKD  (3.55)
fr.frer |:Ef’ Tr (S‘;/]'B}(/%S;,]'B?,I’)@)} gf’ gfu
—1 pKD ¢—1 pKD
+(=1) > S BRSS! T (57 B Sp Bier) oy
! 0 f _ _ KD ¢KD °
fre >y T (S B S B, ) €5 ER

The covariance matrix up to first order in C’?}E, is therefore

2(599/
coveor = —1BKD ¢—1 KD +
2T (Sf’ B oSy Bf',e)
—1pKD ¢—1pRKD ~1pKD ¢—1pRKD (3.56)
5 Tr <Sf' Bf’,e”Sf' Bf’,G/) Tr (Sf// Bf”G’Sf“ Bf”,9”> C]%,l\}”
+ Ogor KD o1 oKD 12 EKDEKD -
pri o [ T (S5 BED, S4B, )| e
The minimum covariance we will have in estimating the kinetic dipole is then
o Te (57 BB, ST BER ) Tr (S5 BRR.S; BED. ) 9y
covger = S P —— +060r p £KD oKD °
Ef TI' (Sf Bf’e Sf Bf,@) f,f/.,()” [Zf r:[\r (SilB}ngslegeD)} f F
(3.57)

The first term is the standard term due to instrumental noise, while the second one is the
term due to SN, that is maximimally reduced by the weights in f, f’ we have chosen.
To connect the covariance of I, to the covariance of §XGwg (fpiv) We use Eq. (3.26),

3\ 2

dacwB _ 1 m f >

Covgy VB = | = COVgy (3.58)
v (QAGWB(fpiv) 3H{

Keep in mind that, according to the definitions we have used here, the covariance matrix

associated to SN is the covariance matrix of the intensity, which is related to the covariance

matrix of the density contrast through

SN 5 3HZ\? SN oacws

Cff/ = QAGWB(fin)Ff?) Cff, . (359)
What we have done until now has been done for a single time-frame. To take into account the
duration of the observation (T,ps = 10yrs), we just divide the covariance by Tjps, neglecting
the effect of rigid rotation

dacws,tot __ 1 JAGWB
COV g1 = covga Ve (3.60)

Tobs
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We extract the dipole from a map by using [9, 81]

Vo,i = Z AQ % 5KCI‘3WB,9 ) (3.61)
0

therefore the covariance of the dipole is related to the covariance of the map through

covij = cov(Vo i, Vo,j) Z AQ2nén9cov9‘;GWB o (3.62)

The covariance matrix we have found for Qaqws(f = 25 Hz) = 3.4 x 107 is

1.1x107% —12x107% —2.9x 10"
covij = | —1.2x107% 6.1x 1077 3.1x1077 | . (3.63)
—29x%x1077 31x1077 73x10°7

Just to give an order of magnitude of the error on the dipole we marginalize over the y and
z directions, obtaining

1 /3
o4, = 2\/>COV10’10/ ~ 0.0005. (364)
™

In analogy with Eq. (3.20), we have provided an estimate of the SNR of the dipole by using
SNR? = 51 cov14,. (3.65)

The result is plotted in Figure 5 as a function of the monopole amplitude of the AGWB at
f = 25Hz. We can see that for values of the monopole of the AGWB within the upper bound
of LIGO/Virgo, the estimator is able to reduce the instrumental noise and to give an SNR
larger than one.

4 Conclusions

One of the most interesting aspects of the AGWB is that the same astrophysical sources
contribute to the overall signal in a wide range of frequencies. Since the evolution of a binary
system is described by three stages, the inspiral, the merger, and the ringdown, we expect
that, when a non-negligible fraction of the sources contribute to the AGWB in the merger and
the ringdown stages, the dependence of the AGWB monopole on the frequency is not simply
a power law. More specifically, when sources at different redshifts contribute to the overall
signal at different stages of the evolution, we are not able to factorize the redshift and the
frequency in the contribution to the background. This means that the monopole amplitude,
the window function to compute the anisotropies of the AGWB, and the evolution bias are
frequency dependent. This allows us to apply a component separation technique between the
three contributions to the AGWB dipole: the intrinsic, the kinematic, and the SN, because
they have different shapes in the frequency domain. It is natural therefore to test if the
next generation GW observatories are able to extract the velocity of the observer w.r.t. the
LSS by looking at the AGWB maps. The analysis of the AGWB kinematic dipole presents
some advantages w.r.t. other probes, such as galaxy surveys, because GW interferometers
are almost full-sky, therefore the bias induced by partial sky coverage is reduced. Moreover,
since interferometers have access to many frequencies, we are able to distinguish between the
intrinsic and the kinematic dipole contributions by just using an observable (the AGWB),
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Figure 5. Plot of the SNR of the kinematic dipole as a function of the monopole amplitude of the
AGWB by considering SN and SN plus instrumental noise (Ngrycg). The horizontal lines show the
SNR equal to 1, 2 and 3 respectively.

without introducing cross-correlations between different observables. The only astrophysical
information we need to know is the population of the sources that contribute to the AGWB
as a function of the redshift and of the mass of the sources. The evolution of the population
of binary systems in time can be found for instance by independent experiments which look
at the SFR, where the error bars are very small, while the mass distribution of the objects
can be extracted by looking at the resolved sources at the interferometers. Even if at the
present time we have large uncertainties on the PDF of the masses of the compact objects
in binaries, future GW experiments will be able to resolve a lot of events, reducing the error
bars on the parameters which describe the mass distributions.

In this work we have quantified the three contributions to the AGWB dipole for a popu-
lation of BBH with a minimum and a maximum mass of 2.5 M and 100 M respectively. We
have see that the SN contribution is about one order of magnitude larger than the kinematic
one and about two orders of magnitude larger than the intrinsic. Motivated by this, we have
performed an analysis on the AGWB dipole in presence of SN only, finding that by using
ILC in a frequency range [100,1000] Hz we are able to extract the kinematic dipole with
SNR =~ 10. In the more realistic scenario, where also the instrumental noise is considered,
the situation is more delicate and the estimator has a more complicated form, since it has to
be built starting from the strain of the AGWB and not from the density contrast. By gener-
alizing the formalism of matched-filtering, typically used to minimize the instrumental noise
at interferometers, we have built an estimator to reduce the covariance given by instrumental
noise and SN. When a network of ET+CE is considered, we are able to extract the kinematic
dipole with an SNR~ 2.5 for a monopole amplitude close to the upper bound provided by
LIGO/Virgo/KAGRA.

The technique introduced in this paper can be extended to other kind of stochastic
background with a non-trivial frequency dependence, such as the the superposition of the
AGWRB signals produced by BHNS and BNS, on top of BBH. In this case we expect a larger
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monopole amplitude, especially at larger frequencies, therefore our analysis would be able to
increase the SNR in the case in which both SN and instrumental noise are taken into account.
Finally, we have found that the main limitation in determining the observer velocity is given
by the instrumental noise, thus we expect that with future improvements of interferometers
sensitivity, we will be able to measure the kinematic dipole more precisely.
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A AGWB Anisotropies Computation
In this work we compute the AGWB anisotropies in the Poisson gauge,
ds® = a*(n) [—dn® (1 + 2¥) + (1 — 2®) 6;da’da? + b da'da’] . (A1)

The observer has a four-velocity u* = [(1 — ¥)/a,v*/a] and we defined the direction of
observations as 7.
The GW density constrast is

/
&mWB:/ﬁxW1Wom—aﬂvw+@—dﬁﬂv+w(3—¢Hﬁ”>+

42
a M a M a . H
+2I <bL] - ﬁ _2> + (5a0+\I/o_U||o) <b[e} - @ —2> —1)” <—b[€] + W +2>
1 1 N
+ 2@ = 2O — o ghiy 't (A:2)
where we have introduced the following projected quantities along the line-of-sight
VY =n-v,
(A.3)
o =n-V

W is the window function associated to the AGWB, while the quantity I represents an
integrated GR contribution to the AGWB anisotropies,

0=y [“ax (v - gn) 0. (A4)

b and b, are the bias and the evolution bias of the GWs respectively, while V' is the velocity
potential defined by

vr=VV. (A.5)
The notation f, indentifies the field f evaluated at the observer, i.e. at coordinates Y, =
Z, = 0. We have denoted with the prime the derivatives w.r.t. the conformal time 7, which

is related to the comoving distance y by

X=10—1, (A.6)

where g is the value of the conformal time at the present.
We compute the coefficients of the expansion in Legendre polynomials of the AGWB density
contrast,

8298 = [ do [ auPu sacwn(a). (A7)
In this way the angular power spectrum is simply
dk
XY = 47T/ < P(k) AFAY ™, (A.8)

where the angular power spectrum is computed w.r.t. the primordial curvature perturbation

¢
S 272

(C(R) ¢ () = (2m)%6® (F - B) 5 P(k) (A.9)
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We have computed the different contributions to A?GWB

, starting from Eq. (A.2), separating

the stochastic and the deterministic part in each random field in the following way

X(n, k)

= Tx(n, k)¢(k),

(A.10)

where T is the transfer function of the field X which takes into account for its evolution
computed by combining the Elnstein and the Boltzmann equations.

The result we have found is®

0 - . aH C
A?en :/0 dn W[z] <b[Z]T5m + 3]€2T0m) Jf(kX) 5

* 3> T
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(A.11)

In our work we have computed the number of BBH mergers A in terms of the number of halos

N and of the number of mergers per halo A,

(B.1)

Since both A and N are Poisson variables, the distribution for A is a Compound Poisson Dis-
tribution (CPD). The expected value of A can be written by using the law of total expectation

by conditioning w.r.t. the number of halos IV,

(A) = E(A) = E[E(AIN)] = E[N(N)] =

5We have used the same notation of [71].
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where E[A|N] = N(\) because we have N identical Poisson distributed random variables of
expected value (\). By using the law of total covariance we find that

cov(As,Aj) = 8O (F — 5)(N) ((N) + (A)?) (B.3)

C SKAO2

The parametrization of the futuristic SKAO “phase two” is described in [84],

dN
dQdz
¢ =6.55, ¢ = 1.93, ¢35 =6.12,

Q(z) =0.282% — 1182 +1.762% 4 1.3672,

4_ 3_ 2
b9 (2) =0.082° — 5472 +16.423 — 19.62% + 7.352 + 0.22¢89-2=" 7169227 -102.527415.52+0.24
(C.1)

:1061(56)202(56)exp [—c3(S,)z] deg™2,

There are basically two reasons why we have chosen SKAO2. The first one is that this survey
has an high sky coverage, fSSkI;AO ~ 72%. In addition, the SKAO2 window function peaks

in a similar redshift range of the window function of the AGWB W. This means that the
cross-correlation is very high and this increases the SNR.
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