

Introduction to **Einstein Telescope** The 3rd Generation GW Observatory in Europe

Dr. Michele Punturo

Istituto Nazionale di Fisica Nucleare (INFN), Perugia, Italy

Spokesperson of the ET Collaboration

The «Gravitational» Universe

- The current picture of the Universe, painted thanks to the photon, neutrino and gravitational wave messengers, has gravity as its canvas
- Our best understanding of the gravity is described by the Albert Einstein General Relativity

Gravitational Lensing

The quantum µ-Universe

- The Standard Model of particle physics is our best description of the microscopic ("femto-scopic") Universe
- It works incredibly well and it allows to describe the nature of the fundamental interactions and elementary particle

The great contradiction

Visible Matter

The dark Universe

Michele Punturo

Gravitational Waves

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \left(-\frac{1}{c^2} \frac{\partial^2}{\partial t^2} + \nabla^2 \right) \bar{h}_{\mu\nu} = 0$ • Prediction of the General Relativity of Albert Einstein

 They are spacetime curvature waves, propagating at the light speed c transporting, as an unstoppable messenger, the most internal information of "cathastrophic" pnenomena, like the coalescence of compact bodies (black holes and/or neutron stars) or the cosmological big Bang.

 $G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$

The GW spectrum

Cosmic Strings

10⁻¹⁶ Hz Inflation Probe

Supermassive BH Binaries

Michele Punturo

10⁻⁹ Hz

Pulsar timing

Extreme Mass Ratio

Inspirals

Binaries coalescences

BH and NS Binaries

10⁰ Hz 10⁻⁴ Hz

Space detectors

Ground interferometers

Spinning NS

10³ Hz

Supernovae

One century of research, study and R&D

Current interferometric GW detectors

Masses in the Stellar Graveyard

Monumental successes of the Advanced detectors

- First detection of GWs from a BBH system (GW150914)
 - Physics of BHs
- First detection of GWs from a BNS system (GW170817)
 - Birth of the multimessenger astronomy with GWs
 - Costraining EOS of NS
- Localisation capabilities of a GW source
- Measurement of the GW propagation speed
- Test of GR
- Alternative measurement of H₀
- GW polarisations
- Intermediate mass black hole (GW190521)

Near future

Binary Neutron Stars Events

- O4 run started on May 24th (LIGO);
- Virgo will join in autumn '23;
- Current detectors have a well-defined plan of upgrades and science runs in the next years.

OK, all done?

- aLIGO and AdV achieved awesome results with a sensitivity poorer than the nominal one
- When they will reach or over-perform their nominal (updated) sensitivity, can we exploit all the potential of GW observations?

 2nd generation GW detectors will explore the local Universe, even in their post-O5 configuration, initiating precision GW astronomy, but to have cosmological investigations a factor of 10 improvement in terms detection distance is needed

3G ground-based detectors will be required to access the high redshift Universe

Detection distance of GWD

15

Where to look for new physics?

- Terrestrial interferometric detectors have access roughly to the [few, few×10³] Hz frequency interval of the GW signal
- GW sources produce signals in different GW ranges
- Discovery machines must have the widest possible frequency range
- Precision measurement machines should have the best sensitivity
- 3G GW observatories must have both

Einstein Telescope (ET)

ET EINSTEIN TELESCOPE

≥ 10km

Mich

Corner halls depth about 200m ET pioneered the idea of a 3rd generation GW observatory:

- A new infrastructure capable to host future upgrades for decades without limiting the observation capabilities
- A sensitivity at least 10 times better than the (nominal) advanced detectors on a large fraction of the (detection) frequency band
 - A dramatic improvement in sensitivity in the low frequency (few Hz – 10Hz) range
- High reliability and improved observation capability
- Polarisation disentanglement

ET: a long path

N

in Perugia on 3G GW

ELITES (FP7) Project

GRA-ET syne

2020

Sol

LIAS (FP6)

200th

Idea

ET conceptual design study (FP7)

CDR

00

unded by ASPERA-2

2010

TR&D

Enabling technologies (seeds)

ESFRI proposal

203

ESFRI status **ET Collaboration formed**

unturo

18

ET EINSTEIN TELESCOPE

40 km and 20 km L-shaped surface observatories 10x sensitivity of today's observatories (Advanced LIGO+) Global network together with Einstein Telescope

1 1

COSM

Observation performance of ET & CE

- BBH up to z~50-100
- 10⁵ BBH/year
 - Masses $M_T \gtrsim 10^3 M_{\odot}$
- BNS to z~2
 - 10⁵ BNS/year

- Possibly O(10-100)/year with e.m. counterpart
- High SNR

ΕT

SNR

Why low frequency focus?

GW190521

$$\begin{split} M_1 &= 85^{+21}_{-14} M_\Theta, M_2 = 66^{+17}_{-18} M_\Theta \\ \text{at } z{\sim}0.82 \text{ (5.3Gpc)} \\ \text{Remnant } M_f &= 142^{+28}_{-16} M_\Theta \end{split}$$

- Very special event:
 - M₁, a black hole that should not exist
 - M_f, the first IMBH ever seen

LIGO-Virgo Black Hole Mergers

21

GW190521: LIGO-Virgo sensitivity to the BBH merger

 Higher masses correspond to lower frequency GW emission

ET Science in a nutshell

ASTROPHYSICS

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - interior structure (QCD at ultra-high densities, exotic states of matter)
 - demography
- Multi-band and -messenger astronomy
 - joint GW/EM observations (GRB, kilonova,...)
 - multiband GW detection (LISA)
 - neutrinos
- Detection of new astrophysical sources
 - core collapse supernovae
 - isolated neutron stars
 - stochastic background of astrophysical origin

FUNDAMENTAL PHYSICS AND COSMOLOGY

- The nature of compact objects
 - near-horizon physics
 - tests of no-hair theorem
 - exotic compact objects
- Tests of General Relativity
 - post-Newtonian expansion
 - strong field regime
- Dark matter

Michele Punturo

- primordial BHs
- axion clouds, dark matter accreting on compact objects
- Dark energy and modifications of gravity on cosmological scales
 - dark energy equation of state
 - modified GW propagation
- Stochastic backgrounds of cosmological origin
 - inflation, phase transitions, cosmic strings

ET Science in a nutshell

- ET will explore almost the entire Universe listening the gravitational waves emitted by black hole, back to the dark ages after the Big Bang
- ET will detect, with high SNR, hundreds of thousands coalescences of binary systems of Neutron Stars per year, revealing the most intimate structure of the nuclear matter in their nuclei

Compact Object Binary Populations

GWs are probing GR in strong field conditions

GW Science with ET

Extreme Gravity conditions

- In GR, no-hair theorem predicts that BHs are described only by their mass and spin (and charge)
 - However, when a BH is perturbed, it reacts (in GR) in a very specific manner, relaxing to its stationary configuration by oscillating in a superpositions of quasi-normal (QN) modes, which are damped by the emission of GWs.
 - A BH, a pure space-time configuration, reacts like an elastic body → Testing the "elasticity" of the space-time fabric
 - Exotic compact bodies could have a different QN emission and have echoes.

Primordial Black Holes

- ET (and CE) will detect BH well beyond the SFR peak z~2
 - comparing the redshift dependence of the BH-BH merger rate with the cosmic star formation rate to disentangle the contribution of BHs of stellar origin from that of possible BHs of primordial origin: any BBH merger at z>30 will be of primordial origin.

Structure of a Neutron Star

Michele Punturo

GW Science with ET

- Neutron stars are an extreme laboratory for nuclear physics
 - The external crust is a Coulomb Crystal of progressively more neutron-reach nuclei.
 - The core is a Fermi liquid of uniform neutron-rich matter ("Exotic phases"? Quark-Gluon plasma?)
 - Tidal deformation from the dephasing in the GW signal → constrain the EOS of the NS.
 - EM information → more stringent constrain.
 - EOS describes the status of the matter in the overcritical pressure condition.

Low frequency: Multi-messenger astronomy

- If we are able to cumulate enough SNR before the merging phase, we can trigger e.m. observations before the emission of photons
- Keyword: low frequency sensitivity:

Design of ET

Einstein gravitational wave Telescope

Conceptual Design Study

2011

10

https://apps.et-gw.eu/tds/ql/?c=7954

2004-3G idea 2005-ET idea 2007-ET CDR proposal 2011-ET CDR 2012-2018 Tech development (in backg outer 2020-ESFRI ET proposal

Design Report Update 2020

for the Einstein Telescope

https://apps.et-gw.eu/tds/ql/?c=15418

ESFRI

ET Steering Committee Editorial Team released September 2020

ET key elements

Requirements

- Wide frequency range
- Massive black holes (LF focus)
- Localisation capability
- (more) Uniform sky coverage
- Polarisation disentanglement
- High Reliability (high duty cycle)
- High SNR

Design Specifications

- Xylophone (multiinterferometer)
 Design
- Underground
- Cryogenic
- Triangular shape
- Multi-detector design

Michele Punturo

• Longer arms

ET design: Δ or (two) L

In the last couple of years, the collaboration started the evaluation of the best configuration for ET, considering the alternative of two L configuration (as LIGO, Cosmic Explorer) to maximize the science return and reduce risks.

Since 2011 (CDS, triangle configuration) the situation drastically changed:

- \Box First detections, GTWC-3 catalog \rightarrow BH population \rightarrow new SF and evolution models;
- □ Science case developed;
- □ Know-how with advanced (L) detectors;
- □ International scenario (+ Cosmic Explorer in US);
- □ Two candidate sites strongly supported (and a potential third site...).

The collaboration is analyzing both configurations: **optimizing science return**, **differential risk assessment.**

Michele Punturo

Challenging engineering New technology in cryo-cooling	ET Enabling Technologies • The multi- interferometer approach asks for two	Parameter Arm length Input power (after IMC) Arm power Temperature Mirror material Mirror diameter / thickness Mirror masses Laser wavelength SR-phase (rad) SR transmittance	ET-HF 10 km 500 W 3 MW 290 K fused silica 62 cm / 30 cm 200 kg 1064 nm tuned (0.0) 10 %	ET-LF 10 km 3 W 18 kW 10-20 K silicon 45 cm/ 57 cm 211 kg 1550 nm detuned (0.6) 20 %	ET EINSTEIN TELESCOPE
New technology in optics New laser technology	parallel technology developments: • ET-LF: • Underground • Cryogenics	Quantum noise suppression Filter cavities Squeezing level Beam shape Beam radius Scatter loss per surface Seismic isolation Seismic (for $f > 1$ Hz) Gravity gradient subtraction	freq. dep. squeez. $1 \times 300 \text{ m}$ 10 dB (effective) TEM ₀₀ 12.0 cm 37 ppm SA, 8 m tall $5 \cdot 10^{-10} \text{ m/} f^2$ none	freq. dep. squeez. $2 \times 1.0 \text{ km}$ 10 dB (effective) TEM ₀₀ 9 cm 37 ppm mod SA, 17 m tall $5 \cdot 10^{-10} \text{ m/} f^2$ factor of a few	Evolved laser technology Evolved technology in
High precision mechanics and low noise controls High quality opto- electronics and new controls	 Silicon (Sapphire) test r Large test masses New coatings New laser wavelength Seismic suspensions Frequency dependent squeezing 	nasses • ET-HF: • High po • Large te • New coa • Therma • Frequer	wer laser est masses atings I compensat ncy depende	tion	optics Highly innovative adaptive optics High quality opto- electronics and

Michele Punturo squeezing

new controls

Challenging Engineering: key points

• ~30km of underground tunnels

- Safety (fire, cryogenic gasses, escape lanes, heat handling during the vacuum pipe backing)
- Noise (creeping, acoustic noise, seismic noise, Newtonian noise)
- Minimisation of the volumes, but preservation of future potential)
- Water handling, hydro-geology and tunnels inclination
- Cost

Large caverns

- In addition to the previous points:
- Stability
- Cleanliness
- Thermal stability
- Ventilation and acoustic noise

ET: large scale and complex infrastructure

Cryo-cooling

ET operative temperature ~10K

Key issues

- Acoustic and vibration noises
- Laser absorption and heat extraction
- Cleanliness and contamination
- Cooling time (large masses, commissioning time, ...)
- Infrastructures
- Technology (cryo-fluids or cryo-coolers)
- Materials
- Safety

Low Frequency special focus

1.e-03

1.e-06

1.e-10

NL.TERZ.01.HHZ

Frequency (Hz) ET.P3.01.HHZ EMR

Sardinia

- Low noise site
- Underground infrastructure
- 17m tall seismic filtering suspensions
 - Large impact on cavern engineering and costs
- R&D in activepassive filtering systems and seismic sensors

Credits: A. Freise

Image: Conor Mow-Lowry

New Optics

• Substrates Challenge:

Absorption of "best 45 cm" MCZ Si: 1.5um

 Substrate (ET-HF silica / ET-LF silicon) of 200 kg-scale, diam≥45cm, with required purity and optical homogeneity/abs.

Credits: A.Freise

- Silicon Challenge:
 - Czochralski (CZ) method produced test masses could have the required size, but show absorption excesses due to the (crucible) contaminants
 - Float Zone (FZ) produced samples show the required purity, but of reduced size (20cm wrt ≥45cm required)
 - Magnetic Czochralski (mCZ) could be the possible solution?

• Coating Challenge:

- major challenge over recent years:
 - Amorphous dielectric coating solutions often either satisfy thermal noise requirement (3.2 times better than the current coatings) or optical performance requirement (less than 0.5ppm) not both
 - AlGaAs Crystalline coatings could satisfy ET-LF requirements, but currently limited to 200mm diameter.

New Laser and Opto-Electronic Technology Virgo and LIGO developed CW low noise lasers at 1064nm

• In ET-HF their evolution toward higher power will be investigated

In ET-LF we will use a different wavelength because of the Silicon test masses:

• λ =1.55 μ m or 2 μ m?

New electro-optic components:

- High quantum efficiency photodiodes
- Low absorption e.o.m.
- Low dissipation faraday isolators

Other relevant challenges

- Auxiliary optics, adaptive optics and thermal compensation of optical aberrations
- Precision mechanics, alignment and positioning
- **Vacuum** (the largest volume under UHV in the World):
 - More than 120km of vacuum pipes
 - ~1 m diameter, total volume 9.4×10⁴ m³
 - 10⁻¹⁰ mbar for H₂, 10⁻¹¹ mbar for N₂ and less than 10⁻¹⁴ mbar for Hydrocarbons
 - Joint development with CERN involving ET and CE
- Low noise controls
- Computing
 - Computation intensive, not data intensive
- Governance & Organisation

ET Collaboration formed

ET EINSTEIN TELESCOPE

https://indico.ego-gw.it/event/411/

Official Birth of the ET Collaboration XII ET Symposium, Budapest on June 7th - 8th More than 400 scientists, out of >1200 members of the Collaboration attended the meeting in person or remove.

The Einstein Telescope Collaboration

ET EINSTEIN TELESCOPE

ET Collaboration Demography

- The data in the ETMD suffer a certain level of inaccuracy:
 - Some RU leaders have not inserted their RU members
 - A few ET members are not updating their information

Data from the ET Member Database (ETMDB), tool based in EGO, governing the Authorization and Authentication to the ET collaboration resources: <u>https://apps.et-gw.eu/etmd</u> Michel We adopted a "particular" flavor of FTE: FRTE (full research time equivalent)

- The declared FRTE need to be matched to an effective activity
 - This will be a major effort in the next years and we should find a realistic method in the Bylaws

Michele Puntury Vertex we have about 295 FrTE \rightarrow 24% on average pgr member - quite low

ESFRI

ET Specific Boards

The Executive Board

• On the 23rd of March, 2023 the ET Collaboration elected the Spokesperson/Deputy Spokesperson team

Einstein Telescope Scientific Collaboration leadership elected

- The EB meets every Monday at 3pm
- You can follow its activities through the meeting minutes on the ET Collaboration Technical Documentation System (TDS): <u>https://apps.et-gw.eu/tds/</u> *
- More info here: <u>https://wiki.et-gw.eu/EB/WebHome</u> *
- ET Collaboration web site (since 2008): <u>https://www.et-gw.eu/</u> * ۲
- Indico (all international ET coll. meetings): <u>https://indico.ego-gw.it/category/23/</u> ۲

(*) Services provided by EGO, based on the ETMDB service (Active Directory)

U Scien σ rvation \mathbf{m} U S C

The E-Infrastructure Board

- Two sites officially candidate to host ET:
 - EMR EUregio, border region between Nederland, Belgium and Germany
 - Sardinia (Lula area, Barbagia)

EINSTEIM

- A third potential site is located in Saxony (Lusatia), still not official
- Overall site evaluation is a complex task depending on:
 - Geophysical and environmental quality
 - Financial and organization aspects
 - Services, infrastructures

How to propose a new RU in the ET collaboration

